login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377759
Number of edge cuts in the n-double cone graph.
1
1, 12, 156, 2652, 47580, 835132, 14274492, 239210620, 3954121852, 64745687292, 1053187674876, 17052187400700, 275180267037180, 4430223031522300, 71202253472533500, 1142950923338418172, 18330518457789188092, 293793080103272648700, 4706573484385846964220
OFFSET
0,2
COMMENTS
Extended to a(0) using the formula/recurrence. - Eric W. Weisstein, Dec 01 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (35,-408,1898,-3980,3880,-1680,256).
Eric Weisstein's World of Mathematics, Double Cone Graph.
Eric Weisstein's World of Mathematics, Edge Cut.
FORMULA
a(n) = 16^n - A158525(n+1)^2. - Christian Sievers, Nov 21 2024
G.f.: -(1-23*x+144*x^2+190*x^3-388*x^4-360*x^5+16*x^6)/((-1+x)*(-1+2*x)*(-1+16*x)*(1-4*x+2*x^2)*(1-12*x+4*x^2)). - Eric W. Weisstein, Dec 01 2024
a(n) = 35*a(n-1)-408*a(n-2)+1898*a(n-3)-3980*a(n-4)+3880*a(n-5)-1680*a(n-6)+256*a(n-7). - Eric W. Weisstein, Dec 01 2024
MATHEMATICA
Table[16^n - 4 - 2^(n + 1) + -2^n ((3 + 2 Sqrt[2])^n + (3 - 2 Sqrt[2])^n) + 4 ((2 - Sqrt[2])^n + (2 + Sqrt[2])^n), {n, 0, 20}] // Expand (* Eric W. Weisstein, Dec 01 2024 *)
Table[16^n - 4 - 2^(n + 1) (ChebyshevT[n, 3] + 1) + 4 ((2 - Sqrt[2])^n + (2 + Sqrt[2])^n), {n, 0, 20}] // Expand (* Eric W. Weisstein, Dec 01 2024 *)
LinearRecurrence[{35, -408, 1898, -3980, 3880, -1680, 256}, {1, 12, 156, 2652, 47580, 835132, 14274492}, 20] (* Eric W. Weisstein, Dec 01 2024 *)
CoefficientList[Series[-(1 - 23 x + 144 x^2 + 190 x^3 - 388 x^4 - 360 x^5 + 16 x^6)/((-1 + x) (-1 + 2 x) (-1 + 16 x) (1 - 4 x + 2 x^2) (1 - 12 x + 4 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2024 *)
CROSSREFS
Cf. A158525.
Sequence in context: A110216 A218839 A036276 * A003130 A015000 A220225
KEYWORD
nonn,changed
AUTHOR
Eric W. Weisstein, Nov 06 2024
EXTENSIONS
a(7) and beyond from Christian Sievers, Nov 21 2024
STATUS
approved