login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156653
Triangle T(n,k) = ((-1)^(n+k)/(n+1))*Sum_{j=0..n} (-1)^j*j!*Stirling2(n, j)* binomial(n-j, k)*binomial(n+j, j), read by rows.
1
1, 1, 3, 1, 16, 13, 1, 125, 171, 39, 1, 1296, 2551, 1091, 101, 1, 16807, 43653, 28838, 5498, 243, 1, 262144, 850809, 780585, 243790, 24270, 561, 1, 4782969, 18689527, 22278189, 10073955, 1733035, 98661, 1263, 1
OFFSET
0,3
COMMENTS
Row sums are A001761.
FORMULA
T(n, m) = [x^m] p(x,n) where p(x,n) = (1-x)^(2*n+1)/((n+1)*x^n)*Sum_{k>=0} (k+1)^n* binomial(k, n)*x^k.
T(n, m) = 1/(n+1)*Sum_{k=0..n} (-1)^(n+m+k)*k!*Stirling2(n,k)*C(n-k,m)*C(n+k,k). - Vladimir Kruchinin, May 05 2020
E.g.f. satisfies: A(x,y) = x*E(A(x,y),y), where E(x,y) is e.g.f. of Euler numbers of first kind A008292. - Vladimir Kruchinin, May 05 2020
EXAMPLE
Triangle begins as:
1;
1;
3, 1;
16, 13, 1;
125, 171, 39, 1;
1296, 2551, 1091, 101, 1;
16807, 43653, 28838, 5498, 243, 1;
262144, 850809, 780585, 243790, 24270, 561, 1;
4782969, 18689527, 22278189, 10073955, 1733035, 98661, 1263, 1;
100000000, 457947691, 677785807, 410994583, 106215619, 10996369, 379693, 2797, 1;
MATHEMATICA
T[n_, m_]:= Sum[(-1)^(n+m+k) k! StirlingS2[n, k] Binomial[n-k, m] Binomial[n+k, k], {k, 0, n}]/(n+1);
Prepend[Table[T[n, m], {n, 10}, {m, 0, n-1}]//Flatten, 1] (* Peter Luschny, May 11 2020 *)
PROG
(Maxima)
T(n, m):=sum(k!*stirling2(n, k)*(-1)^(n+m+k)*binomial(n-k, m)*binomial(n+k, k), k, 0, n) /(n+1); /* Vladimir Kruchinin, May 11 2020 */
(Magma)
A156653:= func< n, k | ((-1)^(n+k)/(n+1))*(&+[ (-1)^j*Factorial(j)*StirlingSecond(n, j)*Binomial(n-j, k)*Binomial(n+j, j) : j in [0..n]]) >;
[1] cat [A156653(n, k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Mar 01 2021
(Sage)
def A156653(n, k): return ((-1)^(n+k)/(n+1))*sum( (-1)^j*factorial(j)* stirling_number2(n, j)*binomial(n-j, k)*binomial(n+j, j) for j in (0..n))
[1]+flatten([[A156653(n, k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Mar 01 2021
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Feb 12 2009
EXTENSIONS
New name by Vladimir Kruchinin, May 11 2020
STATUS
approved