login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156650
Positive numbers y such that y^2 is of the form x^2+(x+119)^2 with integer x.
2
85, 89, 91, 101, 119, 145, 175, 185, 221, 289, 349, 371, 461, 595, 769, 959, 1021, 1241, 1649, 2005, 2135, 2665, 3451, 4469, 5579, 5941, 7225, 9605, 11681, 12439, 15529, 20111, 26045, 32515, 34625, 42109, 55981, 68081, 72499, 90509, 117215, 151801
OFFSET
1,1
COMMENTS
(-51, a(1)), (-39, a(2)), (-35, a(3)), (-20, a(4)) and (A129837(n), a(n+4)) are solutions (x, y) to the Diophantine equation x^2+(x+119)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-9) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/((9+4*sqrt(2))/7)^2 for n mod 9 = 1.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 9 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 9 = {3, 8}.
lim_{n -> infinity} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2/((9+4*sqrt(2))/7) for n mod 9 = {4, 7}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)/((19+6*sqrt(2))/17) for n mod 9 = {5, 6}.
FORMULA
a(n) = 6*a(n-9)-a(n-18) for n > 18; a(1)=85, a(2)=89, a(3)=91, a(4)=101, a(5)=119, a(6)=145, a(7)=175, a(8)=185, a(9)=221, a(10)=289, a(11)=349, a(12)=371, a(13)=461, a(14)=595, a(15)=769, a(16)=959, a(17)=1021, a(18)=1241.
G.f.: x * (1-x) * (85 +174*x +265*x^2 +366*x^3 +485*x^4 +630*x^5 +805*x^6 +990*x^7 +1211*x^8 +990*x^9 +805*x^10 +630*x^11 +485*x^12 +366*x^13 +265*x^14 +174*x^15 +85*x^16) / (1 -6*x^9 +x^18). [adapted to the offset by Bruno Berselli, Apr 01 2011]
EXAMPLE
(-51, a(1)) = (-51, 85) is a solution: (-51)^2+(-51+119)^2 = 2601+4624 = 7225 = 85^2.
(A129837(1), a(5)) = (0, 119) is a solution: 0^2+(0+119)^2 = 14161 = 119^2.
(A129837(3), a(7)) = (49, 175) is a solution: 49^2+(49+119)^2 = 2401+28224 = 30625 = 175^2.
MATHEMATICA
upto=200000; With[{max=Ceiling[(Sqrt[2*upto^2]-119)/2]}, Union[ Sqrt[#]&/@ Select[Table[x^2+(x+119)^2, {x, -250, max}], IntegerQ[Sqrt[#]]&]]](* Harvey P. Dale, Aug 11 2011 *)
PROG
(PARI) {forstep(n=-52, 120000, [1, 3], if(issquare(n^2+(n+119)^2, &k), print1(k, ", ")))}
CROSSREFS
Cf. A129837, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17).
Sequence in context: A003906 A215432 A020312 * A044978 A308516 A095593
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 17 2009
STATUS
approved