OFFSET
1,1
COMMENTS
Consider the value at s = 2 of the partition zeta functions zeta_{type}(s), where the defining sum runs over partitions into 'type' parts, where 'type' is 'even', 'prime' or 'distinct'. (For the precise definitions see R. Schneider's dissertation.) Then
zeta_{even}(2) = Pi/2 = A019669;
zeta_{prime}(2) = Pi^2/6 = A013661;
zeta_{distinct}(2) = sinh(Pi)/Pi, this constant. - Peter Luschny, Aug 11 2021
For m>0, Product_{k>=1} (1 + m/k^2) = sinh(Pi*sqrt(m)) / (Pi*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024
REFERENCES
Reinhold Remmert, Classical topics in complex function theory, Vol. 172 of Graduate Texts in Mathematics, p. 12, Springer, 1997.
LINKS
Robert Schneider, Eulerian series, zeta functions and the arithmetic of partitions, arXiv:2008.04243 [math.NT], 2020.
FORMULA
Equals sinh(Pi)/Pi.
Equals 1/A090986. - R. J. Mathar, Mar 05 2009
Binomial(2, 1+i) = 1/(i!*(-i)!) (where x! means Gamma(x+1)). - Robert G. Wilson v, Feb 23 2015
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(2*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{k>=1} (1+2/(k*(k+2))). - Amiram Eldar, Aug 16 2020
EXAMPLE
3.676077910374977720695697492028260666507156346827630277478003593557447324111... = (1+1)*(1+1/4)*(1+1/9)*(1+1/16)*(1+1/25)*...
MAPLE
evalf(sinh(Pi)/Pi) ;
MATHEMATICA
RealDigits[Sinh[Pi]/Pi, 10, 111][[1]] (* or *)
RealDigits[Re[1/(I!*(-I)!)], 10, 111][[1]] (* Robert G. Wilson v, Feb 23 2015 *)
PROG
(PARI) sinh(Pi)/Pi \\ Charles R Greathouse IV, Dec 16 2013
CROSSREFS
KEYWORD
AUTHOR
R. J. Mathar, Feb 12 2009
STATUS
approved