login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156646
Triangle T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 10, read by rows.
3
1, 1, 1, 1, 484, 1, 1, 233289, 233289, 1, 1, 112444816, 54198633636, 112444816, 1, 1, 54198168025, 12591535188240100, 12591535188240100, 54198168025, 1, 1, 26123404543236, 2925290638056514680225, 1409984043580226203632400, 2925290638056514680225, 26123404543236, 1
OFFSET
0,5
FORMULA
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 10.
From G. C. Greubel, Jul 03 2021: (Start)
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = (1/2^n)*Product_{j=1..n} (1 - ChebyshevT(2*j, k+1)), b(n, 0) = n!, and m = 10.
T(n, k, m) = Product_{j=1..n-k} ( (1 - ChebyshevT(2*j+2*k, m+1))/(1 - ChebyshevT(2*j, m+1)) ) with m = 10. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 484, 1;
1, 233289, 233289, 1;
1, 112444816, 54198633636, 112444816, 1;
1, 54198168025, 12591535188240100, 12591535188240100, 54198168025, 1;
MATHEMATICA
(* First program *)
b[n_, k_]:= b[n, k]= If[k==0, n!, Product[1 -ChebyshevT[j, k+1]^2, {j, n}]];
T[n_, k_, m_]= b[n, m]/(b[k, m]*b[n-k, m]);
Table[T[n, k, 10], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jul 03 2021 *)
(* Second program *)
T[n_, k_, m_]:= T[n, k, m]= Product[(1 - ChebyshevT[2*j+2*k, m+1])/(1 - ChebyshevT[2*j, m+1]), {j, n-k}];
Table[T[n, k, 12], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 03 2021 *)
PROG
(Magma)
b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
T:= func< n, k, m | b(n, m)/(b(k, m)*b(n-k, m)) >;
[T(n, k, 10): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 03 2021
(Sage)
def b(n, k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )
def T(n, k, m): return b(n, m)/(b(k, m)*b(n-k, m))
flatten([[T(n, k, 10) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 03 2021
CROSSREFS
Cf. A007318 (m=0), A173585 (m=1), A156645 (m=2), this sequence (m=10).
Sequence in context: A158330 A288082 A251625 * A177434 A202444 A329872
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 12 2009
EXTENSIONS
Edited by G. C. Greubel, Jul 03 2021
STATUS
approved