login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156645
Triangle T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 2, read by rows.
3
1, 1, 1, 1, 36, 1, 1, 1225, 1225, 1, 1, 41616, 1416100, 41616, 1, 1, 1413721, 1634261476, 1634261476, 1413721, 1, 1, 48024900, 1885939157025, 64069586905104, 1885939157025, 48024900, 1, 1, 1631432881, 2176372249076025, 2511659716192658889, 2511659716192658889, 2176372249076025, 1631432881, 1
OFFSET
0,5
FORMULA
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 2.
From G. C. Greubel, Jul 03 2021: (Start)
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = (1/2^n)*Product_{j=1..n} (1 - ChebyshevT(2*j, k+1)), b(n, 0) = n!, and m = 2.
T(n, k, m) = Product_{j=1..n-k} ( (1 - ChebyshevT(2*j+2*k, m+1))/(1 - ChebyshevT(2*j, m+1)) ) with m = 2. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 36, 1;
1, 1225, 1225, 1;
1, 41616, 1416100, 41616, 1;
1, 1413721, 1634261476, 1634261476, 1413721, 1;
1, 48024900, 1885939157025, 64069586905104, 1885939157025, 48024900, 1;
MATHEMATICA
(* First program *)
b[n_, k_]:= b[n, k]= If[k==0, n!, Product[1 -ChebyshevT[j, k+1]^2, {j, n}]];
T[n_, k_, m_]= b[n, m]/(b[k, m]*b[n-k, m]);
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jul 03 2021 *)
(* Second program *)
T[n_, k_, m_]:= T[n, k, m]= Product[(1 - ChebyshevT[2*j+2*k, m+1])/(1 - ChebyshevT[2*j, m+1]), {j, n-k}];
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 03 2021 *)
PROG
(Magma)
b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
T:= func< n, k, m | b(n, m)/(b(k, m)*b(n-k, m)) >;
[T(n, k, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 03 2021
(Sage)
def b(n, k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )
def T(n, k, m): return b(n, m)/(b(k, m)*b(n-k, m))
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 03 2021
CROSSREFS
Cf. A007318 (m=0), A173585 (m=1), this sequence (m=2), A156646 (m=10).
Sequence in context: A181635 A174673 A203277 * A330084 A350385 A374498
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 12 2009
EXTENSIONS
Edited by G. C. Greubel, Jul 03 2021
STATUS
approved