OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..25 of the triangle, flattened
FORMULA
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 2.
From G. C. Greubel, Jul 03 2021: (Start)
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = (1/2^n)*Product_{j=1..n} (1 - ChebyshevT(2*j, k+1)), b(n, 0) = n!, and m = 2.
T(n, k, m) = Product_{j=1..n-k} ( (1 - ChebyshevT(2*j+2*k, m+1))/(1 - ChebyshevT(2*j, m+1)) ) with m = 2. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 36, 1;
1, 1225, 1225, 1;
1, 41616, 1416100, 41616, 1;
1, 1413721, 1634261476, 1634261476, 1413721, 1;
1, 48024900, 1885939157025, 64069586905104, 1885939157025, 48024900, 1;
MATHEMATICA
(* First program *)
b[n_, k_]:= b[n, k]= If[k==0, n!, Product[1 -ChebyshevT[j, k+1]^2, {j, n}]];
T[n_, k_, m_]= b[n, m]/(b[k, m]*b[n-k, m]);
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jul 03 2021 *)
(* Second program *)
T[n_, k_, m_]:= T[n, k, m]= Product[(1 - ChebyshevT[2*j+2*k, m+1])/(1 - ChebyshevT[2*j, m+1]), {j, n-k}];
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 03 2021 *)
PROG
(Magma)
b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;
T:= func< n, k, m | b(n, m)/(b(k, m)*b(n-k, m)) >;
[T(n, k, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 03 2021
(Sage)
def b(n, k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )
def T(n, k, m): return b(n, m)/(b(k, m)*b(n-k, m))
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 03 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 12 2009
EXTENSIONS
Edited by G. C. Greubel, Jul 03 2021
STATUS
approved