login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 2, read by rows.
3

%I #9 Sep 08 2022 08:45:41

%S 1,1,1,1,36,1,1,1225,1225,1,1,41616,1416100,41616,1,1,1413721,

%T 1634261476,1634261476,1413721,1,1,48024900,1885939157025,

%U 64069586905104,1885939157025,48024900,1,1,1631432881,2176372249076025,2511659716192658889,2511659716192658889,2176372249076025,1631432881,1

%N Triangle T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 2, read by rows.

%H G. C. Greubel, <a href="/A156645/b156645.txt">Rows n = 0..25 of the triangle, flattened</a>

%F T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2), b(n, 0) = n!, and m = 2.

%F From _G. C. Greubel_, Jul 03 2021: (Start)

%F T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = (1/2^n)*Product_{j=1..n} (1 - ChebyshevT(2*j, k+1)), b(n, 0) = n!, and m = 2.

%F T(n, k, m) = Product_{j=1..n-k} ( (1 - ChebyshevT(2*j+2*k, m+1))/(1 - ChebyshevT(2*j, m+1)) ) with m = 2. (End)

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 36, 1;

%e 1, 1225, 1225, 1;

%e 1, 41616, 1416100, 41616, 1;

%e 1, 1413721, 1634261476, 1634261476, 1413721, 1;

%e 1, 48024900, 1885939157025, 64069586905104, 1885939157025, 48024900, 1;

%t (* First program *)

%t b[n_, k_]:= b[n,k]= If[k==0, n!, Product[1 -ChebyshevT[j, k+1]^2, {j,n}]];

%t T[n_, k_, m_]= b[n,m]/(b[k,m]*b[n-k,m]);

%t Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jul 03 2021 *)

%t (* Second program *)

%t T[n_, k_, m_]:= T[n, k, m]= Product[(1 - ChebyshevT[2*j+2*k, m+1])/(1 - ChebyshevT[2*j, m+1]), {j, n-k}];

%t Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 03 2021 *)

%o (Magma)

%o b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >;

%o T:= func< n,k,m | b(n,m)/(b(k,m)*b(n-k,m)) >;

%o [T(n,k,2): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 03 2021

%o (Sage)

%o def b(n, k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) )

%o def T(n, k, m): return b(n,m)/(b(k,m)*b(n-k,m))

%o flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jul 03 2021

%Y Cf. A007318 (m=0), A173585 (m=1), this sequence (m=2), A156646 (m=10).

%Y Cf. A123583, A156647.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Feb 12 2009

%E Edited by _G. C. Greubel_, Jul 03 2021