|
|
A090986
|
|
Decimal expansion of Pi/sinh(Pi).
|
|
23
|
|
|
2, 7, 2, 0, 2, 9, 0, 5, 4, 9, 8, 2, 1, 3, 3, 1, 6, 2, 9, 5, 0, 2, 3, 6, 5, 8, 3, 6, 7, 2, 0, 3, 7, 5, 5, 5, 8, 4, 0, 7, 1, 8, 3, 6, 3, 4, 6, 0, 3, 1, 5, 9, 4, 9, 5, 0, 6, 8, 9, 6, 7, 8, 3, 8, 5, 6, 2, 4, 6, 1, 9, 1, 3, 6, 9, 4, 8, 7, 8, 8, 8, 1, 9, 1, 1, 5, 3, 1, 1, 7, 2, 1, 0, 6, 9, 3, 7, 6, 4, 4, 8, 6, 1, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Or, decimal expansion of Pi * csch(Pi).
|
|
REFERENCES
|
Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004.
|
|
LINKS
|
|
|
FORMULA
|
Pi/sinh(Pi) = Prod_{k>=1} k^2/(k^2+1) = 0.27202905498213316295...
Pi * csch(Pi) = Product_{n >= 2} (n^2 - 1)/(n^2 + 1). - Jonathan Vos Post, Dec 07 2005
Equals Gamma(1+i)*Gamma(1-i), where i is the imaginary unit. - Vaclav Kotesovec, Dec 10 2015
Equals (1)_(-i)*(1)_i where (n)_k denotes the rising factorial. - Peter Luschny, May 06 2022
Equals 1 - 2*Sum_{n >= 1} (-1)^(n+1)/(n^2 + 1). - Peter Bala, Jan 01 2023
|
|
EXAMPLE
|
0.272029054982133162950236583672...
|
|
MATHEMATICA
|
RealDigits[Pi/Sinh[Pi], 10, 120][[1]] (* Harvey P. Dale, May 16 2019 *)
|
|
PROG
|
(PARI) default(realprecision, 100); Pi/sinh(Pi) \\ G. C. Greubel, Feb 02 2019
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sinh(Pi(R)); // G. C. Greubel, Feb 02 2019
(Sage) numerical_approx(pi/sinh(pi), digits=100) # G. C. Greubel, Feb 02 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|