login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144663 Decimal expansion of product_{n=2..infinity} (n^4-1)/(n^4+1). 2
8, 4, 8, 0, 5, 4, 0, 4, 9, 3, 5, 2, 9, 0, 0, 3, 9, 2, 1, 2, 9, 6, 5, 0, 1, 8, 3, 4, 0, 5, 0, 0, 7, 7, 0, 5, 8, 4, 7, 9, 8, 7, 4, 8, 6, 8, 8, 4, 7, 1, 7, 6, 6, 6, 4, 3, 0, 6, 9, 6, 4, 5, 3, 8, 0, 6, 6, 1, 3, 5, 7, 2, 8, 5, 5, 5, 5, 4, 4, 1, 2, 7, 1, 3, 6, 7, 6, 6, 3, 7, 6, 7, 3, 6, 9, 0, 1, 2, 5, 2, 9, 5, 8, 7, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..104.

J. Borwein et al., Experimentation in Mathematics, 2004, section 1.2.

E. W. Weisstein, Infinite Product, MathWorld.

FORMULA

Pi*sinh(Pi) / (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)). - Vaclav Kotesovec, Dec 08 2015

EXAMPLE

0.8480540493529003921296501834...

MAPLE

Digits := 120 :

m := 1:

for r from 2 to 10 do

omega := cos(Pi/r)+I*sin(Pi/r) :

x := (-1)^(m+1)*2*m*m!/r*mul( GAMMA(-m*omega^j)^(-(-1)^j), j=1..2*r-1) ;

x := Re(evalf(x)) ;

print(r, x) ;

od:

MATHEMATICA

RealDigits[ -1/2*Pi*Csc[(-1)^(1/4)*Pi]*Csc[(-1)^(3/4)*Pi]*Sinh[Pi] // Re, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)

RealDigits[Re[N[Product[(n^4 - 1)/(n^4 + 1), {n, 2, Infinity}], 110]]][[1]] (* Bruno Berselli, Apr 02 2013 *)

CROSSREFS

Cf. A090986, A255434.

Sequence in context: A019684 A244210 A019867 * A197260 A155889 A275712

Adjacent sequences:  A144660 A144661 A144662 * A144664 A144665 A144666

KEYWORD

nonn,cons

AUTHOR

R. J. Mathar, Feb 01 2009

EXTENSIONS

More terms from Jean-François Alcover, Feb 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 17:14 EST 2020. Contains 331245 sequences. (Running on oeis4.)