login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095194
Least number that yields a semiprime when appended to n!.
2
0, 1, 2, 7, 2, 1, 1, 1, 1, 1, 2, 1, 1, 7, 17, 1, 1, 1, 31, 13, 1, 59, 13, 7, 1, 61, 41, 37, 31, 1, 7, 7, 1, 2, 5, 61, 41, 7, 13, 37, 61, 43, 1, 1, 47, 67, 1, 3, 67, 61, 5, 19, 5, 11, 7, 13, 1, 3, 1, 71, 11, 1, 67, 109, 103, 43, 29
OFFSET
1,3
COMMENTS
a(114) would require the factorization of the 190-digit number 1000*114!+181. - Hugo Pfoertner, May 18 2021
LINKS
Tyler Busby, Table of n, a(n) for n = 1..126 (terms 1..101 from Sean A. Irvine, term 102 from Florian Baur, terms 103..113 from Hugo Pfoertner)
EXAMPLE
Refers to the semiprimes 10, 21, 62, 247, 1202, 7201, 50401, 403201, etc.
MAPLE
A095194 := proc(n) local nf, i, ns ; nf := convert(n!, base, 10) ; for i from 1 do ns := [op(convert(i, base, 10)), op(nf)] ; add( op(j, ns)*10^(j-1), j=1..nops(ns)) ; if numtheory[bigomega](%) = 2 then return i ; end if; end do: end proc: # R. J. Mathar, Jun 17 2011
MATHEMATICA
Array[Block[{m = #!, k = 0}, While[PrimeOmega[10^If[k == 0, 1, IntegerLength[k]]*m + k] != 2, k++]; k] &, 40] (* Michael De Vlieger, May 17 2021 *)
PROG
(PARI) a(n)=for(i=0, 1e9, bigomega(eval(Str(n!, i)))==2 & return(i)) \\ M. F. Hasler, Jun 17 2011
CROSSREFS
Sequence in context: A090986 A245221 A195726 * A254251 A095711 A102886
KEYWORD
base,nonn,hard,changed
AUTHOR
Jason Earls, Jun 21 2004
EXTENSIONS
Corrected and extended by Sean A. Irvine, Jun 16 2011
STATUS
approved