OFFSET
0,2
COMMENTS
The irrational part is given in A251733.
Inspired by the Lévy C-curve, and generated using different construction rules as shown in the links.
The length of this variant Lévy C-curve is an integer in the real quadratic number field Q(sqrt(2)), namely L(n) = A(n) + B(n)*sqrt(2) with A(n) = a(n) = 3^n*A123335(n) and B(n) = A251733(n) = 3^n*A077985(n-1), with A077985(-1) = 0. See the construction rule and the illustration in the links.
The total length of the Lévy C-curve after n iterations is sqrt(2)^n, also an integer in Q(sqrt(2)) (see a comment on A077957). The fractal dimension of the Lévy C-curve is 2, but for this modified case it is log(3)/log(1+sqrt(2)) = 1.2464774357... .
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
MathImages, Lévy's C-curve
Kival Ngaokrajang, Construction rule, Illustration of modified Lévy C curve
Wikipedia, Lévy C curve
Index entries for linear recurrences with constant coefficients, signature (-6,9).
FORMULA
a(n) = 3^n*A123335(n).
a(n) = -6*a(n-1) + 9*a(n-2). - Colin Barker, Dec 07 2014
G.f.: -(3*x+1)/(9*x^2-6*x-1). - Colin Barker, Dec 07 2014
a(n) = ((3*(-1+sqrt(2)))^n + (-3*(1+sqrt(2)))^n) / 2. - Colin Barker, Jan 21 2017
E.g.f.: exp(-3*x)*cosh(3*sqrt(2)*x). - Stefano Spezia, Feb 01 2023
EXAMPLE
The first lengths a(n) + A251733(n)*sqrt(2) are:
1, -3 + 3*sqrt(2), 27 - 18*sqrt(2), -189 + 135*sqrt(2), 1377 - 972*sqrt(2), -9963 + 7047*sqrt(2), 72171 - 51030*sqrt(2), -522693 + 369603*sqrt(2), 3785697 - 2676888*sqrt(2), -27418419 + 19387755*sqrt(2), 198581787 - 140418522*sqrt(2), ... - Wolfdieter Lang, Dec 08 2014
MATHEMATICA
LinearRecurrence[{-6, 9}, {1, -3}, 30] (* G. C. Greubel, Nov 18 2017 *)
PROG
(PARI) Vec(-(3*x+1) / (9*x^2-6*x-1) + O(x^100)) \\ Colin Barker, Dec 07 2014
(Magma) [Round(((3*(-1+Sqrt(2)))^n + (-3*(1+Sqrt(2)))^n)/2): n in [0..30]]; // G. C. Greubel, Nov 18 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Kival Ngaokrajang, Dec 07 2014
EXTENSIONS
More terms from Colin Barker, Dec 07 2014
Edited: Name specified, Q(sqrt(2))remarks given earlier in a comment to a first version, MathImages link added. - Wolfdieter Lang, Dec 07 2014
STATUS
approved