This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A251732 a(n) = 3^n*A123335(n). Rational parts of the integers in Q(sqrt(2)) giving the length of a Lévy C-curve variant at iteration step n. 6
 1, -3, 27, -189, 1377, -9963, 72171, -522693, 3785697, -27418419, 198581787, -1438256493, 10416775041, -75444958683, 546420727467, -3957528992949, 28662960504897, -207595523965923, 1503539788339611, -10889598445730973, 78869448769442337, -571223078628232779 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The irrational part is given in A251733. Inspired by the Lévy C-curve, and generated using different construction rules as shown in the links. The length of this variant Lévy C-curve is an integer in the real quadratic number field Q(sqrt(2)), namely L(n) = A(n) + B(n)*sqrt(2) with A(n) = a(n) = 3^n*A123335(n) and B(n) = A251733(n) = 3^n*A077985(n-1), with A077985(-1) =  0. See the construction rule and the illustration in the links. The total length of the Lévy C-curve after n iterations is sqrt(2)^n, also an integer in Q(sqrt(2)) (see a comment on A077957). The fractal dimension of the Lévy C-curve is 2, but for this modified case it is log(3)/log(1+sqrt(2)) = 1.2464774357... . LINKS Colin Barker, Table of n, a(n) for n = 0..1000 MathImages, Lévy's C-curve Kival Ngaokrajang, Construction rule, Illustration of modified Lévy C curve Wikipedia, Lévy C curve Index entries for linear recurrences with constant coefficients, signature (-6,9). FORMULA a(n) = 3^n*A123335(n). a(n) = -6*a(n-1) + 9*a(n-2). - Colin Barker, Dec 07 2014 G.f.: -(3*x+1)/(9*x^2-6*x-1). - Colin Barker, Dec 07 2014 a(n) = ((3*(-1+sqrt(2)))^n + (-3*(1+sqrt(2)))^n) / 2. - Colin Barker, Jan 21 2017 EXAMPLE The first lengths a(n) + A251733(n)*sqrt(2) are: 1, -3 + 3*sqrt(2), 27 - 18*sqrt(2), -189 + 135*sqrt(2), 1377 - 972*sqrt(2), -9963 + 7047*sqrt(2), 72171 - 51030*sqrt(2), -522693 + 369603*sqrt(2), 3785697 - 2676888*sqrt(2), -27418419 + 19387755*sqrt(2), 198581787 - 140418522*sqrt(2), ... - Wolfdieter Lang, Dec 08 2014 MATHEMATICA LinearRecurrence[{-6, 9}, {1, -3}, 30] (* G. C. Greubel, Nov 18 2017 *) PROG (PARI) Vec(-(3*x+1) / (9*x^2-6*x-1) + O(x^100)) \\ Colin Barker, Dec 07 2014 (MAGMA) [Round(((3*(-1+Sqrt(2)))^n + (-3*(1+Sqrt(2)))^n)/2): n in [0..30]]; // G. C. Greubel, Nov 18 2017 CROSSREFS Cf. A017910, A077985, A123335, A251733. Sequence in context: A127220 A127222 A248225 * A145241 A118996 A267947 Adjacent sequences:  A251729 A251730 A251731 * A251733 A251734 A251735 KEYWORD sign,easy AUTHOR Kival Ngaokrajang, Dec 07 2014 EXTENSIONS More terms from Colin Barker, Dec 07 2014 Edited: Name specified, Q(sqrt(2))remarks given earlier in a comment to a first version, MathImages link added. - Wolfdieter Lang, Dec 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 02:05 EST 2019. Contains 319320 sequences. (Running on oeis4.)