login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251732
a(n) = 3^n*A123335(n). Rational parts of the integers in Q(sqrt(2)) giving the length of a Lévy C-curve variant at iteration step n.
6
1, -3, 27, -189, 1377, -9963, 72171, -522693, 3785697, -27418419, 198581787, -1438256493, 10416775041, -75444958683, 546420727467, -3957528992949, 28662960504897, -207595523965923, 1503539788339611, -10889598445730973, 78869448769442337, -571223078628232779
OFFSET
0,2
COMMENTS
The irrational part is given in A251733.
Inspired by the Lévy C-curve, and generated using different construction rules as shown in the links.
The length of this variant Lévy C-curve is an integer in the real quadratic number field Q(sqrt(2)), namely L(n) = A(n) + B(n)*sqrt(2) with A(n) = a(n) = 3^n*A123335(n) and B(n) = A251733(n) = 3^n*A077985(n-1), with A077985(-1) = 0. See the construction rule and the illustration in the links.
The total length of the Lévy C-curve after n iterations is sqrt(2)^n, also an integer in Q(sqrt(2)) (see a comment on A077957). The fractal dimension of the Lévy C-curve is 2, but for this modified case it is log(3)/log(1+sqrt(2)) = 1.2464774357... .
FORMULA
a(n) = 3^n*A123335(n).
a(n) = -6*a(n-1) + 9*a(n-2). - Colin Barker, Dec 07 2014
G.f.: -(3*x+1)/(9*x^2-6*x-1). - Colin Barker, Dec 07 2014
a(n) = ((3*(-1+sqrt(2)))^n + (-3*(1+sqrt(2)))^n) / 2. - Colin Barker, Jan 21 2017
E.g.f.: exp(-3*x)*cosh(3*sqrt(2)*x). - Stefano Spezia, Feb 01 2023
EXAMPLE
The first lengths a(n) + A251733(n)*sqrt(2) are:
1, -3 + 3*sqrt(2), 27 - 18*sqrt(2), -189 + 135*sqrt(2), 1377 - 972*sqrt(2), -9963 + 7047*sqrt(2), 72171 - 51030*sqrt(2), -522693 + 369603*sqrt(2), 3785697 - 2676888*sqrt(2), -27418419 + 19387755*sqrt(2), 198581787 - 140418522*sqrt(2), ... - Wolfdieter Lang, Dec 08 2014
MATHEMATICA
LinearRecurrence[{-6, 9}, {1, -3}, 30] (* G. C. Greubel, Nov 18 2017 *)
PROG
(PARI) Vec(-(3*x+1) / (9*x^2-6*x-1) + O(x^100)) \\ Colin Barker, Dec 07 2014
(Magma) [Round(((3*(-1+Sqrt(2)))^n + (-3*(1+Sqrt(2)))^n)/2): n in [0..30]]; // G. C. Greubel, Nov 18 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Kival Ngaokrajang, Dec 07 2014
EXTENSIONS
More terms from Colin Barker, Dec 07 2014
Edited: Name specified, Q(sqrt(2))remarks given earlier in a comment to a first version, MathImages link added. - Wolfdieter Lang, Dec 07 2014
STATUS
approved