login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123335 a(n) = -2*a(n-1)+a(n-2) for n>1, a(0)=1, a(1)=-1. 4
1, -1, 3, -7, 17, -41, 99, -239, 577, -1393, 3363, -8119, 19601, -47321, 114243, -275807, 665857, -1607521, 3880899, -9369319, 22619537, -54608393, 131836323, -318281039, 768398401, -1855077841, 4478554083, -10812186007, 26102926097, -63018038201, 152139002499 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inverse binomial transform of A077957 .

The inverse of the g.f. is 3-x-2/(1+x) which generates 1, 1, -2, +2, -2, +2,... (-2, +2 periodically continued). - Gary W. Adamson, Jan 10 2011

Pisano period lengths:  1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12,... - R. J. Mathar, Aug 10 2012

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index to sequences with linear recurrences with constant coefficients, signature (-2,1).

FORMULA

a(n) = (-1)^n*A001333(n).

G.f.: (1+x)/(1+2*x-x^2).

a(n) = 1/2*((-1-sqrt(2))^n+(-1+sqrt(2))^n). [Paolo P. Lava, Nov 19 2008]

a(n) = A077985(n)+A077985(n-1). - R. J. Mathar, Mar 28 2011

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013

MATHEMATICA

LinearRecurrence[{-2, 1}, {1, -1}, 40] (* Harvey P. Dale, Nov 03 2011 *)

CROSSREFS

Sequence in context: A077851 A089737 A001333 * A078057 A089742 A187258

Adjacent sequences:  A123332 A123333 A123334 * A123336 A123337 A123338

KEYWORD

sign,easy

AUTHOR

Philippe Deléham, Jun 27 2007

EXTENSIONS

Corrected by N. J. A. Sloane, Oct 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 19 21:10 EDT 2014. Contains 240777 sequences.