This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123335 a(n) = -2*a(n-1)+a(n-2) for n>1, a(0)=1, a(1)=-1. 10
 1, -1, 3, -7, 17, -41, 99, -239, 577, -1393, 3363, -8119, 19601, -47321, 114243, -275807, 665857, -1607521, 3880899, -9369319, 22619537, -54608393, 131836323, -318281039, 768398401, -1855077841, 4478554083, -10812186007, 26102926097, -63018038201, 152139002499 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Inverse binomial transform of A077957 . The inverse of the g.f. is 3-x-2/(1+x) which generates 1, 1, -2, +2, -2, +2,... (-2, +2 periodically continued). - Gary W. Adamson, Jan 10 2011 Pisano period lengths:  1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12,... - R. J. Mathar, Aug 10 2012 a(n) is the rational part of the Q(sqrt(2)) integer (sqrt(2) - 1)^n = a(n) + A077985(n-1)*sqrt(2), with A077985(-1) = 0. - Wolfdieter Lang, Dec 07 2014 3^n*a(n) = A251732(n) gives the rational part of the integer in Q(sqrt(2)) giving the length of a variant of Lévy's C-curve at iteration step n. - Wolfdieter Lang, Dec 07 2014 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-2,1). FORMULA a(n) = (-1)^n*A001333(n). G.f.: (1+x)/(1+2*x-x^2). a(n) = 1/2*((-1-sqrt(2))^n+(-1+sqrt(2))^n). [Paolo P. Lava, Nov 19 2008] a(n) = A077985(n)+A077985(n-1). - R. J. Mathar, Mar 28 2011 G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013 MATHEMATICA LinearRecurrence[{-2, 1}, {1, -1}, 40] (* Harvey P. Dale, Nov 03 2011 *) CROSSREFS Cf. A001333, A077985, A251732. Sequence in context: A077851 A089737 A001333 * A078057 A089742 A187258 Adjacent sequences:  A123332 A123333 A123334 * A123336 A123337 A123338 KEYWORD sign,easy AUTHOR Philippe Deléham, Jun 27 2007 EXTENSIONS Corrected by N. J. A. Sloane, Oct 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.