login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123335
a(n) = -2*a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=-1.
10
1, -1, 3, -7, 17, -41, 99, -239, 577, -1393, 3363, -8119, 19601, -47321, 114243, -275807, 665857, -1607521, 3880899, -9369319, 22619537, -54608393, 131836323, -318281039, 768398401, -1855077841, 4478554083, -10812186007, 26102926097, -63018038201, 152139002499
OFFSET
0,3
COMMENTS
Inverse binomial transform of A077957.
The inverse of the g.f. is 3-x-2/(1+x) which generates 1, 1, -2, +2, -2, +2, ... (-2, +2 periodically continued). - Gary W. Adamson, Jan 10 2011
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, ... - R. J. Mathar, Aug 10 2012
a(n) is the rational part of the Q(sqrt(2)) integer (sqrt(2) - 1)^n = a(n) + A077985(n-1)*sqrt(2), with A077985(-1) = 0. - Wolfdieter Lang, Dec 07 2014
3^n*a(n) = A251732(n) gives the rational part of the integer in Q(sqrt(2)) giving the length of a variant of Lévy's C-curve at iteration step n. - Wolfdieter Lang, Dec 07 2014
Define u(0) = 1/0, u(1) = -1/1, and u(n) = -(8 + 3*u(n-1)*u(n-2))/(3*u(n-1) + 2*u(n-2)) for n>1. Then u(n) = a(n)/A000219(n). - Michael Somos, Apr 19 2022
FORMULA
a(n) = (-1)^n*A001333(n).
G.f.: (1+x)/(1+2*x-x^2).
a(n) = A077985(n) + A077985(n-1). - R. J. Mathar, Mar 28 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013
G.f.: 1/(1 + x/(1 + 2*x/(1 - x))). - Michael Somos, Apr 19 2022
E.g.f.: exp(-x)*cosh(sqrt(2)*x). - Stefano Spezia, Feb 01 2023
EXAMPLE
G.f. = 1 - x + 3*x^2 - 7*x^3 + 17*x^4 - 41*x^5 + 99*x^6 + ... - Michael Somos, Apr 19 2022
MAPLE
a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^(-n)):
seq(a(n), n=0..33); # Alois P. Heinz, Jun 22 2021
MATHEMATICA
LinearRecurrence[{-2, 1}, {1, -1}, 40] (* Harvey P. Dale, Nov 03 2011 *)
PROG
(PARI) x='x+O('x^50); Vec((1+x)/(1+2*x-x^2)) \\ G. C. Greubel, Oct 12 2017
(PARI) {a(n) = real((-1 + quadgen(8))^n)}; /* Michael Somos, Apr 19 2022 */
(Magma) [Round(1/2*((-1-Sqrt(2))^n+(-1+Sqrt(2))^n)): n in [0..30]]; // G. C. Greubel, Oct 12 2017
CROSSREFS
Cf. A000129, A001333, A077985, A251732, A001541 (bisection), A002315 (bisection).
Sequence in context: A131056 A077851 A089737 * A001333 A078057 A089742
KEYWORD
sign,easy
AUTHOR
Philippe Deléham, Jun 27 2007
EXTENSIONS
Corrected by N. J. A. Sloane, Oct 05 2008
STATUS
approved