login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^n*A123335(n). Rational parts of the integers in Q(sqrt(2)) giving the length of a Lévy C-curve variant at iteration step n.
6

%I #35 Feb 01 2023 14:29:24

%S 1,-3,27,-189,1377,-9963,72171,-522693,3785697,-27418419,198581787,

%T -1438256493,10416775041,-75444958683,546420727467,-3957528992949,

%U 28662960504897,-207595523965923,1503539788339611,-10889598445730973,78869448769442337,-571223078628232779

%N a(n) = 3^n*A123335(n). Rational parts of the integers in Q(sqrt(2)) giving the length of a Lévy C-curve variant at iteration step n.

%C The irrational part is given in A251733.

%C Inspired by the Lévy C-curve, and generated using different construction rules as shown in the links.

%C The length of this variant Lévy C-curve is an integer in the real quadratic number field Q(sqrt(2)), namely L(n) = A(n) + B(n)*sqrt(2) with A(n) = a(n) = 3^n*A123335(n) and B(n) = A251733(n) = 3^n*A077985(n-1), with A077985(-1) = 0. See the construction rule and the illustration in the links.

%C The total length of the Lévy C-curve after n iterations is sqrt(2)^n, also an integer in Q(sqrt(2)) (see a comment on A077957). The fractal dimension of the Lévy C-curve is 2, but for this modified case it is log(3)/log(1+sqrt(2)) = 1.2464774357... .

%H Colin Barker, <a href="/A251732/b251732.txt">Table of n, a(n) for n = 0..1000</a>

%H MathImages, <a href="http://mathforum.org/mathimages/index.php/Lévy&#39;s_C-curve">Lévy's C-curve</a>

%H Kival Ngaokrajang, <a href="/A251732/a251732.pdf">Construction rule</a>, <a href="/A251732/a251732_1.pdf">Illustration of modified Lévy C curve</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/L%C3%A9vy_C_curve">Lévy C curve</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-6,9).

%F a(n) = 3^n*A123335(n).

%F a(n) = -6*a(n-1) + 9*a(n-2). - _Colin Barker_, Dec 07 2014

%F G.f.: -(3*x+1)/(9*x^2-6*x-1). - _Colin Barker_, Dec 07 2014

%F a(n) = ((3*(-1+sqrt(2)))^n + (-3*(1+sqrt(2)))^n) / 2. - _Colin Barker_, Jan 21 2017

%F E.g.f.: exp(-3*x)*cosh(3*sqrt(2)*x). - _Stefano Spezia_, Feb 01 2023

%e The first lengths a(n) + A251733(n)*sqrt(2) are:

%e 1, -3 + 3*sqrt(2), 27 - 18*sqrt(2), -189 + 135*sqrt(2), 1377 - 972*sqrt(2), -9963 + 7047*sqrt(2), 72171 - 51030*sqrt(2), -522693 + 369603*sqrt(2), 3785697 - 2676888*sqrt(2), -27418419 + 19387755*sqrt(2), 198581787 - 140418522*sqrt(2), ... - _Wolfdieter Lang_, Dec 08 2014

%t LinearRecurrence[{-6,9}, {1,-3}, 30] (* _G. C. Greubel_, Nov 18 2017 *)

%o (PARI) Vec(-(3*x+1) / (9*x^2-6*x-1) + O(x^100)) \\ _Colin Barker_, Dec 07 2014

%o (Magma) [Round(((3*(-1+Sqrt(2)))^n + (-3*(1+Sqrt(2)))^n)/2): n in [0..30]]; // _G. C. Greubel_, Nov 18 2017

%Y Cf. A017910, A077985, A123335, A251733.

%K sign,easy

%O 0,2

%A _Kival Ngaokrajang_, Dec 07 2014

%E More terms from _Colin Barker_, Dec 07 2014

%E Edited: Name specified, Q(sqrt(2))remarks given earlier in a comment to a first version, MathImages link added. - _Wolfdieter Lang_, Dec 07 2014