login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170771
Expansion of 2 * ( phi(q) * phi(q^7) * phi(q^9) * phi(q^63) + phi(-q) * phi(-q^7) * phi(-q^9) * phi(-q^63) + 4 * q^4 * f(-q^6)^2 * f(-q^42)^2 ) in powers of q^2 where phi(), psi(), and f() are Ramanujan theta functions.
3
4, 0, 16, 0, 16, 0, 0, 0, 32, 16, 32, 16, 0, 0, 16, 0, 64, 32, 16, 32, 0, 0, 48, 16, 0, 0, 96, 0, 16, 16, 0, 32, 48, 0, 64, 0, 80, 32, 32, 0, 128, 64, 0, 64, 208, 32, 112, 32, 0, 0, 240, 0, 160, 48, 128, 96, 32, 0, 144, 32, 0, 96, 96, 16, 208, 64, 0, 64, 288, 0, 32, 48
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, 1984; see Entry 27, pp. 170-171. This is the left side of (27.1).
EXAMPLE
G.f. = 4 + 16*x^2 + 16*x^4 + 32*x^8 + 16*x^9 + 32*x^10 + 16*x^11 + ...
G.f. = 4 + 16*q^4 + 16*q^8 + 32*q^16 + 16*q^18 + 32*q^20 + 16*q^22 + 16*q^28 + 64*q^32 + ...
MATHEMATICA
QP = QPochhammer; f[q_] := QPochhammer[-q, -q]; p[q_] := EllipticTheta[3, 0, q]; u[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, Sqrt[q]]; a[n_] := SeriesCoefficient[2*(p[q]*p[q^7]*p[q^9]*p[q^63] + p[-q]*p[-q^7]*p[-q^9]*p[-q^63] + 4*q^4*f[-q^6]^2*f[-q^42]^2 ), {q, 0, n}]; Table[a[n], {n, 0, 100}][[ ;; ;; 2]] (* G. C. Greubel, Dec 05 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 10 2009
STATUS
approved