login
A170771
Expansion of 2 * ( phi(q) * phi(q^7) * phi(q^9) * phi(q^63) + phi(-q) * phi(-q^7) * phi(-q^9) * phi(-q^63) + 4 * q^4 * f(-q^6)^2 * f(-q^42)^2 ) in powers of q^2 where phi(), psi(), and f() are Ramanujan theta functions.
3
4, 0, 16, 0, 16, 0, 0, 0, 32, 16, 32, 16, 0, 0, 16, 0, 64, 32, 16, 32, 0, 0, 48, 16, 0, 0, 96, 0, 16, 16, 0, 32, 48, 0, 64, 0, 80, 32, 32, 0, 128, 64, 0, 64, 208, 32, 112, 32, 0, 0, 240, 0, 160, 48, 128, 96, 32, 0, 144, 32, 0, 96, 96, 16, 208, 64, 0, 64, 288, 0, 32, 48
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, 1984; see Entry 27, pp. 170-171. This is the left side of (27.1).
EXAMPLE
G.f. = 4 + 16*x^2 + 16*x^4 + 32*x^8 + 16*x^9 + 32*x^10 + 16*x^11 + ...
G.f. = 4 + 16*q^4 + 16*q^8 + 32*q^16 + 16*q^18 + 32*q^20 + 16*q^22 + 16*q^28 + 64*q^32 + ...
MATHEMATICA
QP = QPochhammer; f[q_] := QPochhammer[-q, -q]; p[q_] := EllipticTheta[3, 0, q]; u[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, Sqrt[q]]; a[n_] := SeriesCoefficient[2*(p[q]*p[q^7]*p[q^9]*p[q^63] + p[-q]*p[-q^7]*p[-q^9]*p[-q^63] + 4*q^4*f[-q^6]^2*f[-q^42]^2 ), {q, 0, n}]; Table[a[n], {n, 0, 100}][[ ;; ;; 2]] (* G. C. Greubel, Dec 05 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 10 2009
STATUS
approved