The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174323 Numbers n such that omega(Fibonacci(n)) is a square. 1
 1, 2, 3, 4, 5, 6, 7, 11, 13, 17, 20, 23, 24, 27, 28, 29, 32, 43, 47, 52, 55, 74, 77, 80, 83, 84, 85, 87, 88, 91, 93, 96, 97, 100, 108, 115, 123, 131, 132, 137, 138, 143, 146, 149, 156, 157, 161, 163, 178, 184, 187, 189, 196, 197, 209, 211, 214, 215, 221, 222, 223, 232 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers n such that omega(A000045 (n)) is a square, where omega(p) is the number of distinct primes factors of p (A001221). Remark: for the larger Fibonacci numbers F(n) (n > 300), the Maple program (below) is very slow. So we use a two-step process: factoring F(n) with the elliptic curve method, and then calculate the distinct primes factors. REFERENCES Majorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974. Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8. LINKS Amiram Eldar, Table of n, a(n) for n = 1..258 (terms 1..200 from Robert Israel, derived from b-file for A022307) Blair Kelly, Fibonacci and Lucas Factorizations Pieter Moree, Counting Divisors of Lucas Numbers, Pacific J. Math, Vol. 186, No. 2, 1998, pp. 267-284. Eric Weisstein's World of Mathematics, Fibonacci Number Wikipedia, Fibonacci number EXAMPLE omega(Fibonacci(1)) = omega(Fibonacci(2)) = omega(1) = 0, omega(Fibonacci(3)) = omega(2) = 1, omega(Fibonacci(20)) = omega(6765)= 4, omega(Fibonacci(80)) = omega( 23416728348467685) = 9. MAPLE with(numtheory):u0:=0:u1:=1:for p from 2 to 400 do :s:=u0+u1:u0:=u1:u1:=s: s1:=nops( ifactors(s)): w1:=sqrt(s1):w2:=floor(w1):if w1=w2 then print (p): else fi:od: # alternative: P:= {}: count:= 1: res:= 1: for i from 2 to 300 do   pn:= map(t -> i/t, numtheory:-factorset(i));   Cprimes:= `union`(seq(P[t], t=pn));   f:= combinat:-fibonacci(i);   for p in Cprimes do f:= f/p^padic:-ordp(f, p) od;   P[i]:= Cprimes union numtheory:-factorset(f);   if issqr(nops(P[i])) then      count:= count+1;      res:= res, i;   fi; od: res; # Robert Israel, Oct 13 2016 MATHEMATICA Select[Range, IntegerQ[Sqrt[PrimeNu[Fibonacci[#]]]] &] (* G. C. Greubel, May 16 2017 *) PROG (PARI) is(n)=issquare(omega(fibonacci(n))) \\ Charles R Greathouse IV, Oct 13 2016 (MAGMA) [k:k in [1..240]| IsSquare(#PrimeDivisors(Fibonacci(k)))]; // Marius A. Burtea, Oct 15 2019 CROSSREFS Cf. A038575 Number of prime factors of n-th Fibonacci number, with multiplicity. Cf. A000213, A000288, A000322, A000383, A060455, A030186, A039834, A020695, A020701, A071679. Cf. A022307 Number of distinct prime factors of n-th Fibonacci number A086597 (number of primitive prime factors). Sequence in context: A051948 A193461 A192587 * A103539 A174821 A033086 Adjacent sequences:  A174320 A174321 A174322 * A174324 A174325 A174326 KEYWORD nonn AUTHOR Michel Lagneau, Mar 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 22:39 EDT 2021. Contains 346377 sequences. (Running on oeis4.)