login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A228394
The number of permutations of length n sortable by 2 prefix block transpositions.
0
1, 2, 6, 21, 61, 146, 302, 561, 961, 1546, 2366, 3477, 4941, 6826, 9206, 12161, 15777, 20146, 25366, 31541, 38781, 47202, 56926, 68081, 80801, 95226, 111502, 129781, 150221, 172986, 198246, 226177, 256961, 290786, 327846, 368341, 412477, 460466, 512526, 568881
OFFSET
1,2
LINKS
Z. Dias and J. Meidanis, Sorting by prefix transpositions, In Proceedings of the 9th International Symposium on String Processing and Information Retrieval (London, UK, UK, 2002), SPIRE 2002, Springer-Verlag, pp. 65-76.
C. Homberger, V. Vatter, On the effective and automatic enumeration of polynomial permutation classes, arXiv preprint arXiv:1308.4946, 2013
FORMULA
G.f.: -1 -(x^2 + 1)*(6*x^2 - 4*x + 1)/(x - 1)^5.
a(n) = 1 + (n-1)*n*(3*n^2-11*n+16)/12. [Bruno Berselli, Aug 22 2013]
EXAMPLE
There are 3 permutations of length 4 that cannot be sorted by 2 prefix block transpositions.
MATHEMATICA
CoefficientList[Series[(1/x) (-1 - (x^2 + 1) (6 x^2 - 4 x + 1)/(x - 1)^5), {x, 0, 50}], x] (* Bruno Berselli, Aug 22 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 2, 6, 21, 61}, 40] (* Harvey P. Dale, May 28 2018 *)
CROSSREFS
Sequence in context: A104143 A088812 A228398 * A245749 A342440 A001434
KEYWORD
nonn,easy
AUTHOR
Vincent Vatter, Aug 21 2013
STATUS
approved