login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368983
Number of connected graphs with loops (symmetric relations) on n unlabeled vertices with n edges.
8
1, 1, 1, 3, 6, 14, 33, 81, 204, 526, 1376, 3648, 9792, 26485, 72233, 198192, 546846, 1515687, 4218564, 11782427, 33013541, 92759384, 261290682, 737688946, 2086993034, 5915398230, 16795618221, 47763406249, 136028420723, 387928330677, 1107692471888, 3166613486137
OFFSET
0,4
COMMENTS
The graphs considered here can have loops but not parallel edges.
LINKS
FORMULA
a(n) = A000081(n) + A001429(n) = A068051(n) - A027852(n) for n > 0.
EXAMPLE
Representatives of the a(3) = 3 graphs are:
{{1,2}, {1,3}, {2,3}},
{{1}, {1,2}, {1,3}},
{{1}, {1,2}, {2,3}}.
PROG
(PARI) \\ TreeGf gives gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + (sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2 - (g(1)^2 + g(2)))/2)}
CROSSREFS
A diagonal of A322114.
The labeled version is A368951.
Cf. A000081, A001429, A027852, A068051, A283755, A368984 (not necessarily connected).
Sequence in context: A192678 A114945 A003477 * A339600 A078062 A275873
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 11 2024
STATUS
approved