

A067773


a(n) is the unique positive integer m which has a selfconjugate partition whose parts are the first n primes.


0



4, 8, 17, 29, 53, 77, 117, 157, 217, 289, 369, 469, 585, 713, 849, 1025, 1197, 1393, 1617, 1845, 2113, 2373, 2661, 2973, 3321, 3681, 4045, 4481, 4865, 5285, 5793, 6253, 6785, 7341, 7949, 8513, 9169, 9765, 10473, 11233, 11969, 12733, 13541, 14337
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In general, given a finite set of positive integers p(1) < ... < p(n), there's a unique selfconjugate partition using these parts; p(n) occurs p(1) times and p(ni) occurs p(i+1)p(i) times for 1<=i<n.


LINKS

Table of n, a(n) for n=1..44.


FORMULA

a(n) = 2 prime(n) + sum from i=1 to n1 of prime(ni)*(prime(i+1)prime(i)) = A014342(n1)A014342(n2).


EXAMPLE

2+2=4; 2+3+3=8; 2+2+3+5+5=17;....


MATHEMATICA

a[n_] := 2Prime[n]+Sum[Prime[ni](Prime[i+1]Prime[i]), {i, 1, n1}]


CROSSREFS

Cf. A000700, A014342.
Sequence in context: A213494 A092321 A026353 * A301145 A008372 A005697
Adjacent sequences: A067770 A067771 A067772 * A067774 A067775 A067776


KEYWORD

easy,nonn


AUTHOR

Naohiro Nomoto, Feb 06 2002


EXTENSIONS

Edited by Dean Hickerson, Feb 12 2002


STATUS

approved



