login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067773 a(n) is the unique positive integer m which has a self-conjugate partition whose parts are the first n primes. 0
4, 8, 17, 29, 53, 77, 117, 157, 217, 289, 369, 469, 585, 713, 849, 1025, 1197, 1393, 1617, 1845, 2113, 2373, 2661, 2973, 3321, 3681, 4045, 4481, 4865, 5285, 5793, 6253, 6785, 7341, 7949, 8513, 9169, 9765, 10473, 11233, 11969, 12733, 13541, 14337 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

In general, given a finite set of positive integers p(1) < ... < p(n), there's a unique self-conjugate partition using these parts; p(n) occurs p(1) times and p(n-i) occurs p(i+1)-p(i) times for 1<=i<n.

LINKS

Table of n, a(n) for n=1..44.

FORMULA

a(n) = 2 prime(n) + Sum_{i=1..n-1} prime(n-i)*(prime(i+1)-prime(i)) = A014342(n-1) - A014342(n-2).

EXAMPLE

2+2 = 4; 2+3+3 = 8; 2+2+3+5+5 = 17; ....

MATHEMATICA

a[n_] := 2Prime[n]+Sum[Prime[n-i](Prime[i+1]-Prime[i]), {i, 1, n-1}]

CROSSREFS

Cf. A000700, A014342.

Sequence in context: A213494 A092321 A026353 * A301145 A008372 A005697

Adjacent sequences:  A067770 A067771 A067772 * A067774 A067775 A067776

KEYWORD

easy,nonn

AUTHOR

Naohiro Nomoto, Feb 06 2002

EXTENSIONS

Edited by Dean Hickerson, Feb 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 03:04 EDT 2021. Contains 348099 sequences. (Running on oeis4.)