login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197132
Euler transform of composite numbers.
1
1, 4, 16, 52, 157, 434, 1144, 2862, 6906, 16090, 36449, 80430, 173555, 366802, 761102, 1552569, 3118508, 6174461, 12064383, 23283027, 44419855, 83834278, 156626605, 289839251, 531534746, 966483534, 1743164649, 3119864511, 5543030861, 9779552117, 17139055493
OFFSET
0,2
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{k>=1} (1-x^k)^-composite(k), where composite(k) = A002808(k) is the k-th composite number.
MAPLE
N:= 100: # to use composites <= N
comps:= remove(isprime, [$4..N]):
M:= nops(comps):
G:= mul((1-x^k)^(-comps[k]), k=1..M):
S:= series(G, x, M+1):
seq(coeff(S, x, j), j=0..M); # Robert Israel, Jan 30 2018
MATHEMATICA
a[ns_Integer?NonNegative, nf_Integer?NonNegative] := CoefficientList[Series[Product[(1 - x^k)^-FixedPoint[k + PrimePi[#] + 1 &, k], {k, 1, nf}], {x, 0, nf}], x][[ns + 1 ;; nf + 1]]; a[0, 30] (* Robert P. P. McKone, Nov 08 2023 *)
CROSSREFS
Sequence in context: A188125 A007688 A320237 * A266943 A100774 A336994
KEYWORD
nonn
AUTHOR
STATUS
approved