login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320237
G.f.: Product_{k>=1, j>=1} ((1 + x^(k*j)) / (1 - x^(k*j)))^2.
2
1, 4, 16, 52, 156, 428, 1120, 2772, 6616, 15224, 34032, 74020, 157340, 327244, 667824, 1338828, 2641332, 5133372, 9840432, 18621476, 34818852, 64374564, 117768176, 213306948, 382733816, 680630120, 1200198784, 2099417544, 3644332860, 6280017740, 10746594208
OFFSET
0,2
COMMENTS
Self-convolution of A301554.
Convolution of A320235 and A320236.
LINKS
FORMULA
Conjecture: log(a(n)) ~ Pi * sqrt(n*log(n)).
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1+x^(k*j))/(1-x^(k*j)))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 08 2018
STATUS
approved