

A100777


Squarefactorial numbers: a(1) = 1, a(n+1) = a(n) * largest square divisor of (n+1).


0



1, 1, 1, 4, 4, 4, 4, 16, 144, 144, 144, 576, 576, 576, 576, 9216, 9216, 82944, 82944, 331776, 331776, 331776, 331776, 1327104, 33177600, 33177600, 298598400, 1194393600, 1194393600, 1194393600, 1194393600, 19110297600
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Complementary to A048803 which can be defined as squarefree factorials. a(1) = 1, a(n+1) = a(n)* largest squarefree divisor of (n+1). Generalization: P(signature)factorial. a(1) = 1, a(n+1) = a(n)* Largest P(signature) divisor of (n+1), where P(signature) is an arbitrarily chosen prime signature unique for a sequence. Subsidiary sequences: Cubefactorial, pq^2 factorial,p^2q^2 factorial etc.


LINKS

Table of n, a(n) for n=1..32.


FORMULA

Partial products of A008833, largest square dividing n.  Ray Chandler, Nov 29 2004


CROSSREFS

Cf. A048803.
Sequence in context: A115639 A242954 A062732 * A309501 A024727 A024552
Adjacent sequences: A100774 A100775 A100776 * A100778 A100779 A100780


KEYWORD

easy,nonn


AUTHOR

Amarnath Murthy, Nov 28 2004


STATUS

approved



