The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100775 a(n) = 97*n + 101. 4
 101, 198, 295, 392, 489, 586, 683, 780, 877, 974, 1071, 1168, 1265, 1362, 1459, 1556, 1653, 1750, 1847, 1944, 2041, 2138, 2235, 2332, 2429, 2526, 2623, 2720, 2817, 2914, 3011, 3108, 3205, 3302, 3399, 3496, 3593, 3690, 3787, 3884, 3981, 4078, 4175, 4272 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Note that 97 is the largest two-digit prime and 101 is the smallest three-digit prime. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (2, -1). FORMULA a(n) = 2*a(n-1) - a(n-2); a(0)=101, a(1)=198. - Harvey P. Dale, Nov 26 2013 G.f.: (101-4*x)/(x-1)^2. - Harvey P. Dale, Nov 26 2013 EXAMPLE If n=1, then 97*1 + 101 = 198. MATHEMATICA 97*Range[0, 50]+101 (* or *) LinearRecurrence[{2, -1}, {101, 198}, 50] (* Harvey P. Dale, Nov 26 2013 *) PROG (Magma) [97*n + 101: n in [0..50]]; // Vincenzo Librandi, Jul 14 2011 (PARI) a(n)=97*n+101 \\ Charles R Greathouse IV, Oct 16 2015 CROSSREFS Cf. A101084, A017029, A100776, A101442. Sequence in context: A269575 A177032 A141913 * A044333 A044714 A158128 Adjacent sequences: A100772 A100773 A100774 * A100776 A100777 A100778 KEYWORD nonn,easy AUTHOR Parthasarathy Nambi, Jan 03 2005 EXTENSIONS More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005 Edited by Ray Chandler, Jan 25 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 21:35 EDT 2024. Contains 373401 sequences. (Running on oeis4.)