login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177032
Primes p of a quadruplet (p,p+2,p+6,p+8) such that (p+(p+2)+(p+6)+(p+8))/60 is a prime.
1
101, 191, 2081, 15731, 67211, 122201, 165701, 171161, 195731, 257861, 268811, 388691, 394811, 420851, 452531, 500231, 563411, 572651, 607301, 632081, 907391, 983441, 1093061, 1117601, 1117811, 1155611, 1156031, 1402361, 1685441, 1917731
OFFSET
1,1
COMMENTS
As noted in A007530, p is of the form p = 6*k-1, so p+2 = 6*k+1, p+6 = 6*k+5, p+8 = 6*k+7. The sum is therefore s = p+(p+2)+(p+6)+(p+8) = 12*(2*k+1). From the same mod 30 formula in A007530, p is also of the form p = 10*m+1, so the sum of the primes in the quadruplet is also of the form s = 5*(8*m+4). Watching the factors of 12 and 5 in these two factorizations of the sum, the factor 60 (least common multiple) is in some sense the optimum, and this is the rationale to look for primes that are a 60th of the sum.
The primes that are generated by a 60th of the sum are: 7, 13, 139, 1049, 4481, 8147, 11047, 11411, 13049, 17191,...
The indices of the p in the sequence of quadruplets (A007530) are 3, 4, 8, 15, 29, 43, 47, 49, 52, 61, 64, 82, 85, 92, 96, 104, 112,...
REFERENCES
A. Bartholome, J. Rung, H. Kern: Zahlentheorie für Einsteiger, vieweg Verlag, 5. Auflage, Wiesbaden, 2006
F. Ischebeck: Einladung zur Zahlentheorie, B.I. Wissenschaftsverlag, Mannheim-Leipzig-Wien-Zürich, 1992
H. Tietze: Gelöste und ungelöste mathematische Probleme aus alter und neuer Zeit, Band 1, dtv Wissenschaft, Muenchen, 1984
LINKS
EXAMPLE
p=11, 11+13+17+19 = 1*60, 1 is not prime, 11 is not a term of the sequence.
p=101: 101+103+107+109 = 7*60, 7 = prime(4), 101 = prime(26) is a term.
p=191: 191+193+197+199 = 13*60, 13 = prime(6), 191 = prime(43) is a term.
MATHEMATICA
Reap[For[n = 1, n < 150000, n++, p = Prime[n]; If[PrimeQ[p + 2] && PrimeQ[p + 6] && PrimeQ[p + 8] && PrimeQ[(p + 4)/15], Sow[p]]]][[2, 1]](* Jean-François Alcover, May 07 2012 *)
Select[Partition[Prime[Range[150000]], 4, 1], Differences[#]=={2, 4, 2}&&PrimeQ[ Total[#]/60]&][[All, 1]] (* Harvey P. Dale, Apr 09 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 01 2010
STATUS
approved