login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156784
Primes : if sums of prime number and 8 consecutive prime numbers on-left-and-on-right are also primes.
3
29, 83, 127, 131, 157, 173, 197, 241, 389, 577, 619, 1129, 1201, 1259, 1361, 1367, 1429, 1439, 1601, 1663, 1723, 1783, 1787, 1811, 2017, 2083, 2153, 2237, 2287, 2351, 2371, 2591, 2659, 2699, 2819, 3163, 3209, 3373, 3407, 3433, 3467, 4013, 4051, 4217
OFFSET
1,1
COMMENTS
3+5+7+11+13+17+19+23+29=127(prime);29+31+37+41+43+47+53+59+61=401(prime),... prime(n)+prime(n-1)+prime(n-2)+prime(n-3)+prime(n-4)+..+prime(n-8) are primes and prime(n)+prime(n+1)+prime(n+2)+prime(n+3)+prime(n+4)+..+prime(n+8) are also primes.
LINKS
MATHEMATICA
lst={}; Do[p0=Prime[n+0]; p1=Prime[n+1]; p2=Prime[n+2]; p3=Prime[n+3]; p4=Prime[n+4]; p5=Prime[n+5]; p6=Prime[n+6]; p7=Prime[n+7]; p8=Prime[n+8]; p9=Prime[n+9]; p10=Prime[n+10]; p11=Prime[n+11]; p12=Prime[n+12]; p13=Prime[n+13]; p14=Prime[n+14]; p15=Prime[n+15]; p16=Prime[n+16]; If[PrimeQ[p0+p1+p2+p3+p4+p5+p6+p7+p8]&&PrimeQ[p8+p9+p10+p11+p12+p13+p14+p15+p16], AppendTo[lst, p8]], {n, 8!}]; lst
Transpose[Select[Partition[Prime[Range[600]], 17, 1], PrimeQ[Total[Take[#, 9]]] && PrimeQ[ Total[Take[#, -9]]]&]][[9]] (* Harvey P. Dale, Jan 29 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved