login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156787
Composite integers n such that 2^{n-1}=1 mod s(n), where s(n) is the sum of the distinct prime factors of n.
2
9, 10, 25, 27, 40, 49, 81, 100, 105, 116, 121, 125, 160, 169, 243, 250, 289, 343, 361, 400, 525, 529, 561, 568, 625, 640, 729, 805, 841, 945, 961, 1000, 1001, 1018, 1045, 1105, 1309, 1331, 1369, 1596, 1600, 1681, 1729, 1849, 1856, 1881, 2001, 2187, 2197, 2205
OFFSET
1,1
LINKS
F. Luca and V. Tipu, On positive integers n with a certain divisibility property, J. Integer Sequences 12 (2009), 11 pp.
FORMULA
n log n << a(n) << n^(1+e) for any e > 0. See Luca & Tipu for more precise results. - Charles R Greathouse IV, Feb 01 2013
EXAMPLE
For n=2, the second number is a(2)=10 because s(10)=2+5=7 divides 2^{10-1}-1=2^9-1=511.
MAPLE
B := {}; for n from 2 to 1000 do A := (numtheory[factorset])(n); b := add(a, `in`(a, A)); if `and`(b < n, `mod`(2^(n-1), b) = 1) then B := [op(B), n] else end if end do; print(c := 2);
MATHEMATICA
Select[Range[2, 2300], CompositeQ[#] && PowerMod[2, #-1, Total[First /@ FactorInteger[#]]] == 1 &] (* Amiram Eldar, Nov 20 2019 *)
PROG
(PARI) is(n)=if(isprime(n), 0, my(f=factor(n)[, 1]); Mod(2, sum(i=1, #f, f[i]))^(n-1)==1) \\ Charles R Greathouse IV, Feb 01 2013
CROSSREFS
Cf. A006145.
Sequence in context: A174042 A263261 A290275 * A025043 A320728 A111033
KEYWORD
nonn
AUTHOR
Florian Luca (fluca(AT)matmor.unam.mx), Feb 15 2009
EXTENSIONS
More terms from Amiram Eldar, Nov 20 2019
STATUS
approved