login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111033
Sum of squares of first n digits of Pi.
2
9, 10, 26, 27, 52, 133, 137, 173, 198, 207, 232, 296, 377, 426, 507, 516, 520, 529, 593, 609, 645, 649, 685, 701, 710, 719, 783, 792, 796, 845, 926, 951, 951, 955, 1019, 1083, 1099, 1100, 1181, 1230, 1231, 1267, 1348, 1357, 1438, 1519, 1528, 1577, 1602
OFFSET
1,1
COMMENTS
a(n) is prime for n = 7, 8, 19, 24, 26, ... a(n) is semiprime for n = 1, 2, 3, 6, 13, 18, 22, 23, ... a(n) is a perfect power for n = 1, 4, 18, ...
LINKS
FORMULA
a(n) = Sum_{i=1..n} A000796(i)^2.
EXAMPLE
a(1) = 3^2 = 9,
a(2) = 3^2 + 1^2 = 10,
a(3) = 3^2 + 1^2 + 4^2 = 26,
a(4) = 3^2 + 1^2 + 4^2 + 1^2 = 27,
a(5) = 3^2 + 1^2 + 4^2 + 1^2 + 5^2 = 52,
a(6) = 3^2 + 1^2 + 4^2 + 1^2 + 5^2 + 9^2 = 133,
a(7) = 3^2 + 1^2 + 4^2 + 1^2 + 5^2 + 9^2 + 2^2 = 137, which is prime.
MAPLE
Digits := 120 ;
A000796 := proc(n) floor(Pi*10^(n-1)) ; % mod 10 ; end proc:
A111033 := proc(n) add( A000796(i)^2, i=1..n) ; end proc:
seq(A111033(n), n=1..120) ; # R. J. Mathar, Dec 21 2010
MATHEMATICA
Accumulate[RealDigits[Pi, 10, 50][[1]]^2] (* Harvey P. Dale, Jul 18 2021 *)
PROG
(Sage) A111033 = lambda n: sum(d**2 for d in floor(pi*10**(n-1)).digits()) # D. S. McNeil Dec 22 2010
CROSSREFS
Cf. A000796.
Sequence in context: A156787 A025043 A320728 * A123048 A189047 A041170
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Oct 05 2005
EXTENSIONS
More terms from Vincenzo Librandi, Dec 21 2010
STATUS
approved