login
A189047
Semiprimes which are one more than a perfect power.
3
9, 10, 26, 33, 65, 82, 122, 129, 145, 217, 226, 362, 485, 626, 785, 842, 901, 1157, 1226, 1522, 1765, 1937, 2026, 2049, 2117, 2305, 2402, 2501, 2602, 2705, 3365, 3482, 3601, 3722, 3845, 4097, 4226, 4762, 5042, 5777, 5833, 6085, 6242, 6401, 7226, 7397, 7745, 8193, 8465, 9026, 9217
OFFSET
1,1
COMMENTS
Numbers of the form p*q where p and q are primes, not necessarily distinct, such that p*q - 1 is a perfect power (squares, cubes, etcetera). T. D. Noe suggested the name semiprimes which are super-perfect powers.
The number of terms <= 10^k: 2, 6, 17, 51, 131, 379, 1015, 2865, 8086, ..., . - Robert G. Wilson v, Apr 16 2011
LINKS
FORMULA
A001358 INTERSECTION {A001597 + 1}.
EXAMPLE
a(21) = 42^2 + 1 = 1765 = 5 * 353.
MATHEMATICA
fQ[n_] := GCD @@ Last /@ FactorInteger[n - 1] > 1 && Plus @@ Last /@ FactorInteger[n] == 2; Select[ Range@ 10000, fQ] (* Robert G. Wilson v, Apr 16 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 15 2011
STATUS
approved