|
|
A189046
|
|
a(n) = lcm(n,n+1,n+2,n+3,n+4,n+5)/60.
|
|
1
|
|
|
0, 1, 7, 14, 42, 42, 462, 462, 858, 3003, 1001, 4004, 6188, 18564, 27132, 3876, 27132, 74613, 100947, 67298, 17710, 230230, 296010, 188370, 237510, 118755, 736281, 453096, 553784, 1344904, 324632
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) mod 2 has a period of 8,repeating[0,1,1,0,0,0,0,0]
a(n)= binomial(n+5,6)/(gcd(n,5)*(A021913(n-1)+1))
|
|
LINKS
|
Nathaniel Johnston, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, order 105.
|
|
FORMULA
|
a(n)= n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(4*(n^4 mod 5)+1)/(1800*((n^3 mod 4)+((n-1)^3 mod 4)+1)).
a(n)= binomial(n+5,6)/(gcd(n,5)*floor(((n-1) mod 4)/2+1))- Gary Detlefs, Apr 22 2011
|
|
MAPLE
|
seq(lcm(n, n+1, n+2, n+3, n+4, n+5)/60, n=0..30)
|
|
MATHEMATICA
|
Table[(LCM@@(n+Range[0, 5]))/60, {n, 0, 40}] (* Harvey P. Dale, Apr 17 2011 *)
|
|
PROG
|
(PARI) a(n)=lcm([n..n+5])/60 \\ Charles R Greathouse IV, Sep 30 2016
|
|
CROSSREFS
|
Cf. A000217 = lcm(n,n+1)/2, A067046, A067047, A067048.
Sequence in context: A161814 A333594 A067048 * A098328 A062098 A045759
Adjacent sequences: A189043 A189044 A189045 * A189047 A189048 A189049
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Gary Detlefs, Apr 15 2011
|
|
STATUS
|
approved
|
|
|
|