login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189046
a(n) = lcm(n,n+1,n+2,n+3,n+4,n+5)/60.
1
0, 1, 7, 14, 42, 42, 462, 462, 858, 3003, 1001, 4004, 6188, 18564, 27132, 3876, 27132, 74613, 100947, 67298, 17710, 230230, 296010, 188370, 237510, 118755, 736281, 453096, 553784, 1344904, 324632
OFFSET
0,3
COMMENTS
a(n) mod 2 has a period of 8, repeating [0,1,1,0,0,0,0,0].
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 7, 0, 0, 0, 0, -28, 0, 0, 0, 0, 84, 0, 0, 0, 0, -203, 0, 0, 0, 0, 413, 0, 0, 0, 0, -728, 0, 0, 0, 0, 1128, 0, 0, 0, 0, -1554, 0, 0, 0, 0, 1918, 0, 0, 0, 0, -2128, 0, 0, 0, 0, 2128, 0, 0, 0, 0, -1918, 0, 0, 0, 0, 1554, 0, 0, 0, 0, -1128, 0, 0, 0, 0, 728, 0, 0, 0, 0, -413, 0, 0, 0, 0, 203, 0, 0, 0, 0, -84, 0, 0, 0, 0, 28, 0, 0, 0, 0, -7, 0, 0, 0, 0, 1).
FORMULA
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(4*(n^4 mod 5)+1)/(1800*((n^3 mod 4)+((n-1)^3 mod 4)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*(A021913(n-1)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*floor(((n-1) mod 4)/2+1)). - Gary Detlefs, Apr 22 2011
Sum_{n>=1} 1/a(n) = 92 + (54/5-18*sqrt(5)+6*sqrt(178-398/sqrt(5)))*Pi. - Amiram Eldar, Sep 29 2022
MAPLE
seq(lcm(n, n+1, n+2, n+3, n+4, n+5)/60, n=0..30)
MATHEMATICA
Table[(LCM@@(n+Range[0, 5]))/60, {n, 0, 40}] (* Harvey P. Dale, Apr 17 2011 *)
PROG
(PARI) a(n)=lcm([n..n+5])/60 \\ Charles R Greathouse IV, Sep 30 2016
CROSSREFS
Cf. A000217 ( = lcm(n,n+1)/2), A021913, A067046, A067047, A067048.
Sequence in context: A161814 A333594 A067048 * A098328 A062098 A374509
KEYWORD
nonn,easy
AUTHOR
Gary Detlefs, Apr 15 2011
STATUS
approved