OFFSET
0,3
COMMENTS
a(n) mod 2 has a period of 8, repeating [0,1,1,0,0,0,0,0].
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 7, 0, 0, 0, 0, -28, 0, 0, 0, 0, 84, 0, 0, 0, 0, -203, 0, 0, 0, 0, 413, 0, 0, 0, 0, -728, 0, 0, 0, 0, 1128, 0, 0, 0, 0, -1554, 0, 0, 0, 0, 1918, 0, 0, 0, 0, -2128, 0, 0, 0, 0, 2128, 0, 0, 0, 0, -1918, 0, 0, 0, 0, 1554, 0, 0, 0, 0, -1128, 0, 0, 0, 0, 728, 0, 0, 0, 0, -413, 0, 0, 0, 0, 203, 0, 0, 0, 0, -84, 0, 0, 0, 0, 28, 0, 0, 0, 0, -7, 0, 0, 0, 0, 1).
FORMULA
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(4*(n^4 mod 5)+1)/(1800*((n^3 mod 4)+((n-1)^3 mod 4)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*(A021913(n-1)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*floor(((n-1) mod 4)/2+1)). - Gary Detlefs, Apr 22 2011
Sum_{n>=1} 1/a(n) = 92 + (54/5-18*sqrt(5)+6*sqrt(178-398/sqrt(5)))*Pi. - Amiram Eldar, Sep 29 2022
MAPLE
seq(lcm(n, n+1, n+2, n+3, n+4, n+5)/60, n=0..30)
MATHEMATICA
Table[(LCM@@(n+Range[0, 5]))/60, {n, 0, 40}] (* Harvey P. Dale, Apr 17 2011 *)
PROG
(PARI) a(n)=lcm([n..n+5])/60 \\ Charles R Greathouse IV, Sep 30 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary Detlefs, Apr 15 2011
STATUS
approved