

A098328


Recurrence sequence derived from the digits of the cube root of 2 after its decimal point.


3



0, 7, 14, 42, 147, 321, 473, 322, 785, 1779, 3039, 1957, 16446, 274134, 374781, 110639, 248175, 385504, 2359264, 5108010, 3822244, 3812946, 9896631
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..22.


FORMULA

a(1)=0. a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of 2^(1/3), a(i+1)=p(i).


EXAMPLE

2^(1/3)=1.259921049894873164767210607...
So for example, with a(1)=0, a(2)=7 because the 7th digit after the decimal point is 0; a(3)=14 because the 14th digit after the decimal point is 7 and so on.


MAPLE

with(StringTools): Digits:=10000: G:=convert(evalf(root(2, 3)), string): a[0]:=0: for n from 1 to 12 do a[n]:=Search(convert(a[n1], string), G)2:printf("%d, ", a[n1]):od: # Nathaniel Johnston, Apr 30 2011


CROSSREFS

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A098327 for sqrt(e). A002580 for digits of 2^(1/3).
Sequence in context: A333594 A067048 A189046 * A062098 A045759 A166637
Adjacent sequences: A098325 A098326 A098327 * A098329 A098330 A098331


KEYWORD

base,more,nonn


AUTHOR

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 14 2004


EXTENSIONS

More terms from Ryan Propper, Jul 21 2006


STATUS

approved



