%I #10 Jul 12 2015 19:51:14
%S 0,7,14,42,147,321,473,322,785,1779,3039,1957,16446,274134,374781,
%T 110639,248175,385504,2359264,5108010,3822244,3812946,9896631
%N Recurrence sequence derived from the digits of the cube root of 2 after its decimal point.
%F a(1)=0. a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of 2^(1/3), a(i+1)=p(i).
%e 2^(1/3)=1.259921049894873164767210607...
%e So for example, with a(1)=0, a(2)=7 because the 7th digit after the decimal point is 0; a(3)=14 because the 14th digit after the decimal point is 7 and so on.
%p with(StringTools): Digits:=10000: G:=convert(evalf(root(2,3)),string): a[0]:=0: for n from 1 to 12 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od: # _Nathaniel Johnston_, Apr 30 2011
%Y Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A098327 for sqrt(e). A002580 for digits of 2^(1/3).
%K base,more,nonn
%O 0,2
%A Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 14 2004
%E More terms from _Ryan Propper_, Jul 21 2006