login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156790
Number of first quadrant lattice squares inside the circle x^2+y^2=(2^n)^2
1
0, 1, 8, 41, 183, 770, 3149, 12730, 51209, 205356, 822500, 3292134, 13172634, 52698912, 210812207, 843281848, 3373193506, 13492906143, 53971888157, 215888078393, 863553363881, 3454215553470, 13816866413106, 55267474046659
OFFSET
0,3
COMMENTS
a(n)/4^n converges to Pi/4 from below.
EXAMPLE
Let + represent a square inside the circle and x a square traversed by the circle.
xx
+x a(1)=1
xxx
++xx
+++x
+++x a(2)=8
PROG
(PARI) a(n)=sum(m=1, 2^n-1, floor(sqrt(4^n-m^2)))
CROSSREFS
Cf. A057655.
Cf. A177144. [From Jaume Oliver Lafont, May 03 2010]
Sequence in context: A273112 A272925 A272944 * A272996 A273070 A273145
KEYWORD
nonn
AUTHOR
Jaume Oliver Lafont, Feb 15 2009
EXTENSIONS
a(19) corrected by Sophia Keith, Sep 15 2024
STATUS
approved