login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273145
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 597", based on the 5-celled von Neumann neighborhood.
0
1, 8, 41, 193, 833, 3457, 14081, 56833, 228353, 915457, 3665921, 14671873, 58703873, 234848257, 939458561, 3757965313
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: a(n) = 14*4^(n-1) - 4*2^n + 1, n>1. - Lars Blomberg, Jul 13 2016
Conjectures from Colin Barker, Jul 13 2016: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>4.
G.f.: (1+x-x^2+10*x^3-8*x^4) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=597; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A273144.
Sequence in context: A156790 A272996 A273070 * A273176 A080840 A199846
KEYWORD
nonn,more
AUTHOR
Robert Price, May 16 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jul 13 2016
STATUS
approved