login
A273146
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 597", based on the 5-celled von Neumann neighborhood.
1
1, 9, 29, 70, 127, 231, 347, 540, 733, 1045, 1337, 1794, 2203, 2835, 3383, 4216, 4921, 5985, 6869, 8190, 9271, 10879, 12179, 14100, 15637, 17901, 19697, 22330, 24403, 27435, 29807, 33264, 35953, 39865, 42893, 47286, 50671, 55575, 59339, 64780, 68941, 74949
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 16 2016: (Start)
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-2*a(n-6)+2*a(n-7)+a(n-8)-a(n-9) for n>8.
G.f.: (1+8*x+18*x^2+25*x^3+17*x^4+22*x^5+4*x^6+x^7) / ((1-x)^4*(1+x)^3*(1+x^2)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=597; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A273144.
Sequence in context: A316602 A331390 A273071 * A272844 A272926 A272945
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 16 2016
STATUS
approved