login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of first quadrant lattice squares inside the circle x^2+y^2=(2^n)^2
1

%I #7 Sep 15 2024 06:13:52

%S 0,1,8,41,183,770,3149,12730,51209,205356,822500,3292134,13172634,

%T 52698912,210812207,843281848,3373193506,13492906143,53971888157,

%U 215888078393,863553363881,3454215553470,13816866413106,55267474046659

%N Number of first quadrant lattice squares inside the circle x^2+y^2=(2^n)^2

%C a(n)/4^n converges to Pi/4 from below.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Gauss_circle_problem">Gauss circle problem</a> [From _Jaume Oliver Lafont_, Apr 20 2010]

%e Let + represent a square inside the circle and x a square traversed by the circle.

%e xx

%e +x a(1)=1

%e xxx

%e ++xx

%e +++x

%e +++x a(2)=8

%o (PARI) a(n)=sum(m=1,2^n-1,floor(sqrt(4^n-m^2)))

%Y Cf. A057655.

%Y Cf. A177144. [From _Jaume Oliver Lafont_, May 03 2010]

%K nonn

%O 0,3

%A _Jaume Oliver Lafont_, Feb 15 2009

%E a(19) corrected by Sophia Keith, Sep 15 2024