login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224608
G.f.: exp( Sum_{n>=1} A219331(n^2)*x^n/n ).
3
1, 1, 3, 12, 81, 1335, 49309, 3882180, 633703214, 212061201327, 144669917959584, 200541263416077021, 563631413420071614333, 3206926569346230863485855, 36897315109526505791310840932, 857701705296285206387609947414980, 40254707002970300021370965171570478599
OFFSET
0,3
COMMENTS
A219331 is the logarithmic derivative of A006456, where A006456(n) is the number of compositions of n into sums of squares.
FORMULA
Logarithmic derivative yields A224607, where A224607(n) = A219331(n^2).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 81*x^4 + 1335*x^5 + 49309*x^6 +...
where
log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 269*x^4/4 + 6181*x^5/5 + 286790*x^6/6 +...+ A219331(n^2)*x^n/n +...
PROG
(PARI) {A219331(n)=n*polcoeff(-log(1-sum(r=1, sqrtint(n+1), x^(r^2)+x*O(x^n))), n)}
{a(n)=polcoeff(exp(sum(m=1, n, A219331(m^2)*x^m/m)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 12 2013
STATUS
approved