login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156361
a(2*n+2) = 7*a(2*n+1), a(2*n+1) = 7*a(2*n) - 6^n*A000108(n), a(0) = 1.
5
1, 6, 42, 288, 2016, 14040, 98280, 686880, 4808160, 33638976, 235472832, 1647983232, 11535882624, 80745019776, 565215138432, 3956385876480, 27694701135360, 193860506096640, 1357023542676480, 9499115800977408
OFFSET
0,2
COMMENTS
Hankel transform is 6^C(n+1, 2).
LINKS
FORMULA
a(n) = Sum{k=0..n} A120730(n,k) * 6^k.
(n+1)*a(n) = 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3). - R. J. Mathar, Jul 21 2016
MAPLE
A156361 := proc(n)
option remember;
local nh;
if n= 0 then
1;
elif type(n, 'even') then
7*procname(n-1);
else
nh := floor(n/2) ;
7*procname(n-1)-6^nh*A000108(nh) ;
end if;
end proc: # R. J. Mathar, Jul 21 2016
MATHEMATICA
a[n_]:= a[n]= If[n==0, 1, 7*a[n-1] -If[EvenQ[n], 0, 6^((n-1)/2)* CatalanNumber[(n-1)/2]]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 04 2022 *)
PROG
(Magma) [n le 3 select Factorial(n+4)/120 else (7*n*Self(n-1) + 24*(n-3)*Self(n-2) - 168*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
(SageMath)
def a(n): # a = A156361
if (n==0): return 1
elif (n%2==1): return 7*a(n-1) - 6^((n-1)/2)*catalan_number((n-1)/2)
else: return 7*a(n-1)
[a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022
KEYWORD
nonn
AUTHOR
Philippe Deléham, Feb 08 2009
STATUS
approved