OFFSET
0,2
COMMENTS
Hankel transform is 6^C(n+1, 2).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Paul Barry, A Note on a One-Parameter Family of Catalan-Like Numbers, JIS 12 (2009) 09.5.4.
FORMULA
a(n) = Sum{k=0..n} A120730(n,k) * 6^k.
(n+1)*a(n) = 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3). - R. J. Mathar, Jul 21 2016
MAPLE
A156361 := proc(n)
option remember;
local nh;
if n= 0 then
1;
elif type(n, 'even') then
7*procname(n-1);
else
nh := floor(n/2) ;
7*procname(n-1)-6^nh*A000108(nh) ;
end if;
end proc: # R. J. Mathar, Jul 21 2016
MATHEMATICA
a[n_]:= a[n]= If[n==0, 1, 7*a[n-1] -If[EvenQ[n], 0, 6^((n-1)/2)* CatalanNumber[(n-1)/2]]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 04 2022 *)
PROG
(Magma) [n le 3 select Factorial(n+4)/120 else (7*n*Self(n-1) + 24*(n-3)*Self(n-2) - 168*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
(SageMath)
def a(n): # a = A156361
if (n==0): return 1
elif (n%2==1): return 7*a(n-1) - 6^((n-1)/2)*catalan_number((n-1)/2)
else: return 7*a(n-1)
[a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Feb 08 2009
STATUS
approved