The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156364 Triangle read by rows: t(n,m) = Sum_{i=0..n} (-1)^(m-i)*Eulerian1(n-i+1, m-i) *Stirling2(n+i+1, i+1), where Eulerian1 are the Eulerian numbers of the first kind (A173018). 2
 1, 1, 2, 1, 3, 19, 1, 4, 41, 274, 1, 5, 26, 812, 5521, 1, 6, -370, 1000, 20490, 143828, 1, 7, -3023, -8607, 34062, 640356, 4607296, 1, 8, -16977, -97974, -192901, 1249164, 23929389, 175377146, 1, 9, -83108, -703130, -1227484, -8076692, 53594570, 1040938950, 7739288201 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Row sums are: {1, 3, 23, 320, 6365, 164955, 5270092, 200247856, 8823731317, 442515406465, 24893699411935,...}. This sequence results from a substitution of the Eulerian numbers for the binomial in Smiley's Corollary 5. LINKS G. C. Greubel, Rows n=0..100 of triangle, flattened L. Smiley, Completion of a Rational Function Sequence of Carlitz, page 3. FORMULA t(n,m) = Sum_{i=0..n} (-1)^(m-i)*Eulerian1(n-i+1, m-i)*Stirling2(n+i+1, i+1), where Eulerian1(n,k) = Sum_{j=0..k+1} (-1)^j * binomial(n+1, j)*(k+1-j)^n or Eulerian1(n,k) = A173018(n,k). EXAMPLE Triangle begins as: 1; 1, 2; 1, 3,     19; 1, 4,     41,    274; 1, 5,     26,    812,    5521; 1, 6,   -370,   1000,   20490,  143828; 1, 7,  -3023,  -8607,   34062,  640356,  4607296; 1, 8, -16977, -97974, -192901, 1249164, 23929389, 175377146; MATHEMATICA Eulerian1[n_, k_]:= Sum[(-1)^j Binomial[n+1, j](k+1-j)^n, {j, 0, k+1}]; t[n_, m_]:= Sum[(-1)^(m-i)*Eulerian1[n-i+1, m-i]*StirlingS2[n+i+1, i+1], {i, 0, n}]; Table[t[n, m], {n, 0, 10}, {m, 0, n}]//Flatten PROG (PARI) Eulerian1(n, k) = sum(j=0, k+1, (-1)^j*binomial(n+1, j)*(k+1-j)^n); t(n, m) = sum(i=0, n, (-1)^(m-i)*Eulerian1(n-i+1, m-i)*stirling(n+i+1, i+1, 2)); for(n=0, 10, for(m=0, n, print1(t(n, m), ", "))) \\ G. C. Greubel, Feb 24 2019 (MAGMA) [[(&+[(-1)^(m-j)*StirlingSecond(n+j+1, j+1)*(&+[(-1)^k*Binomial(n-j+2, k)*(m-j+1-k)^(n-j+1): k in [0..m-j+1]]): j in [0..m]]): m in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 25 2019 (Sage) [[sum((-1)^(m-j)*stirling_number2(n+j+1, j+1)*sum( (-1)^k*binomial(n-j+2, k)*(m-j-k+1)^(n-j+1) for k in (0..m-j+1)) for j in (0..m)) for m in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 25 2019 CROSSREFS Cf. A048993 (Stirling2), A156139, A156363, A173018. Sequence in context: A132950 A197190 A247482 * A106169 A319493 A108353 Adjacent sequences:  A156361 A156362 A156363 * A156365 A156366 A156367 KEYWORD sign,tabl AUTHOR Roger L. Bagula, Feb 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 02:34 EST 2020. Contains 338756 sequences. (Running on oeis4.)