login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156367
Triangle T(n, k) = binomial(n+k, 2*k)*k!, read by rows.
2
1, 1, 1, 1, 3, 2, 1, 6, 10, 6, 1, 10, 30, 42, 24, 1, 15, 70, 168, 216, 120, 1, 21, 140, 504, 1080, 1320, 720, 1, 28, 252, 1260, 3960, 7920, 9360, 5040, 1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320, 1, 45, 660, 5544, 30888, 120120, 327600, 604800, 685440, 362880
OFFSET
0,5
LINKS
FORMULA
G.f.: 1/(1 -x -x*y/(1 -x -x*y/(1 -x -2*x*y/(1 -x -2*x*y/(1 -x -3*x*y/(1 -x -3*x*y/(1 - ... (continued fraction).
T(n, k) = binomial(n+k, 2*k)*k!
T(n, k) = A155856(n, n-k).
Sum_{k=0..n} T(n, k) = A155857(n).
sum_{k=0..floor(n/2)} T(n, k) = A084261(n).
EXAMPLE
Triangle begins
1;
1, 1;
1, 3, 2;
1, 6, 10, 6;
1, 10, 30, 42, 24;
1, 15, 70, 168, 216, 120;
1, 21, 140, 504, 1080, 1320, 720;
1, 28, 252, 1260, 3960, 7920, 9360, 5040;
1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320;
MATHEMATICA
Flatten[Table[Binomial[n+k, 2k]k!, {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Jun 17 2015 *)
PROG
(Sage) flatten([[factorial(k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
CROSSREFS
Cf. A084261 (diagonal sums), A155856 (row reversal), A155857 (row sums)
Sequence in context: A088617 A190909 A144250 * A193593 A308616 A181853
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 08 2009
STATUS
approved