login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155857
Row sums of triangle A155856.
4
1, 2, 6, 23, 107, 590, 3786, 27821, 230869, 2137978, 21873854, 245151555, 2987967551, 39358156310, 557259550034, 8440866957273, 136211005966889, 2333068710452146, 42276699542130166, 808068680469402095, 16248405328930779027, 342877404288485770718, 7576652528705018522906
OFFSET
0,2
COMMENTS
For positive n, a(n) equals the permanent of the n X n matrix with 2's along the main diagonal and the upper diagonal, and 1's everywhere else. - John M. Campbell, Jul 09 2011
LINKS
Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
FORMULA
G.f.: 1/(1 -x -x/(1 -x -x/(1 -x -2*x/(1 -x -2*x/(1 -x -3*x/(1 -x -3*x/(1 - ... (continued fraction);
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*(n-k)!.
a(n) = Sum_{k=0..n} binomial(n+k, 2*k)*k!. - Paul Barry, May 28 2009
a(n) = (n+1)*a(n-1) -(n-3)*a(n-2) -a(n-3). - R. J. Mathar, Nov 15 2012
a(n) ~ exp(2) * n!. - Vaclav Kotesovec, Feb 08 2014
MATHEMATICA
Table[Sum[Binomial[2*n-k, k]*(n-k)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 08 2014 *)
PROG
(Sage) [sum(binomial(2*n-k, k)*factorial(n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 05 2021
CROSSREFS
Cf. A155856.
Sequence in context: A071075 A007555 A101053 * A378734 A071076 A297196
KEYWORD
nonn,easy,changed
AUTHOR
Paul Barry, Jan 29 2009
STATUS
approved