login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155859
a(n) = (1/162)*(61*10^n + 18*n + 20).
1
4, 38, 377, 3766, 37655, 376544, 3765433, 37654322, 376543211, 3765432100, 37654320989, 376543209878, 3765432098767, 37654320987656, 376543209876545, 3765432098765434, 37654320987654323, 376543209876543212, 3765432098765432101, 37654320987654320990
OFFSET
1,1
COMMENTS
First prime: a(19) = 3765432098765432101. Next prime: a(271) = 3*10^270 + 765432098*(10^(9*29)-1)*10^9/(10^9-1) + 765432129. - Bruno Berselli, Oct 15 2013
FORMULA
from Bruno Berselli, Oct 15 2013: (Start)
G.f.: x*(4 -10*x +5*x^2)/((1-10*x)*(1-x)^2).
a(n) = 12*a(n-1) -21*a(n-2) +10*a(n-3). (End)
E.g.f.: (1/162)*(-81 + 2*(10 + 9*x)*exp(x) + 61*exp(10*x)). - G. C. Greubel, Jun 04 2021
MATHEMATICA
Table[(1/162)*(61*10^n +18*n +20), {n, 20}] (* Bruno Berselli, Oct 15 2013 *)
PROG
(PARI) a(n) = (1/162)*(61*10^n + 18*n + 20); \\ Michel Marcus, Oct 15 2013
(Magma) [(1/162)*(61*10^n+18*n+20): n in [1..20]]; // Bruno Berselli, Oct 15 2013
(Sage) [(1/162)*(61*10^n +18*n +20) for n in (1..20)] # G. C. Greubel, Jun 04 2021
CROSSREFS
Sequence in context: A240378 A220807 A221021 * A220543 A220748 A192947
KEYWORD
nonn,easy,changed
AUTHOR
Zak Seidov, Jan 29 2009
STATUS
approved