The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155861 a(n) is the smallest integer k such that the n-th (backward) difference of the partition sequence A000041 is positive from k onwards. 3
 1, 2, 8, 26, 68, 134, 228, 352, 510, 704, 934, 1204, 1514, 1866, 2260, 2702, 3188, 3722, 4304, 4936, 5620, 6354, 7140, 7980, 8872, 9822, 10826, 11888, 13006, 14182, 15416, 16712, 18066, 19480, 20956, 22494, 24096, 25760, 27486, 29278, 31134 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Using a different (forward) definition of the difference operator, this sequence has also been given as 0, 1, 6, 23, 64, 129, 222, ... A119712. LINKS Jean-François Alcover, Table of n, a(n) for n = 0..60 Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181. Hansraj Gupta, Finite Differences of the Partition Function, Math. Comp. 32 (1978), 1241-1243. Charles Knessl, Asymptotic Behavior of High-Order Differences of the Partition Function, Communications on Pure and Applied Mathematics, 44 (1991), 1033-1045. A. M. Odlyzko, Differences of the partition function, Acta Arith., 49 (1988), 237-254. Eric Weisstein's World of Mathematics, Backward Difference FORMULA An asymptotic formula is a(n) ~ 6/Pi^2 * n^2 (log n)^2. MAPLE A41:= n-> `if` (n<0, 0, combinat[numbpart](n)): DB:= proc(p)        proc(n) option remember;          p(n) -p(n-1)        end      end: a:= proc(n) option remember;       local f, k;       if n=0 then 1              else f:= (DB@@n)(A41);              for k from a(n-1) while not (f(k)>0 and f(k+1)>0) do od; k       fi     end: seq(a(n), n=0..20); MATHEMATICA a[n_] := a[n] = Module[{f}, f[i_] = DifferenceDelta[PartitionsP[i], {i, n}]; For[j = 2, True, j++, If[f[j] > 0 && f[j + 1] > 0, Return[j + n]]]]; a[0] = 1; a[1] = 2; Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 04 2020 *) CROSSREFS Cf. A000041, A002865, A053445, A072380, A081094, A081095, A175804, A119712. Sequence in context: A099416 A211885 A101696 * A212140 A136594 A268502 Adjacent sequences:  A155858 A155859 A155860 * A155862 A155863 A155864 KEYWORD nonn AUTHOR Alois P. Heinz, Dec 16 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 18:17 EDT 2021. Contains 345120 sequences. (Running on oeis4.)