login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155863 A sequence of polynomial coefficients related to the third derivative of the Pascal triangle: p(x,n)=x^n+1+x*d^3(x+1)^(n+1)/dx^3=If[n == 0, 1, x^n + 1 + x*D[(x + 1)^(n + 1), {x, 3}]]. 1
1, 1, 1, 1, 6, 1, 1, 24, 24, 1, 1, 60, 120, 60, 1, 1, 120, 360, 360, 120, 1, 1, 210, 840, 1260, 840, 210, 1, 1, 336, 1680, 3360, 3360, 1680, 336, 1, 1, 504, 3024, 7560, 10080, 7560, 3024, 504, 1, 1, 720, 5040, 15120, 25200, 25200, 15120, 5040, 720, 1, 1, 990, 7920 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums are:

{1, 2, 8, 50, 242, 962, 3362, 10754, 32258, 92162, 253442,...}

LINKS

Table of n, a(n) for n=0..57.

FORMULA

p(x,n)=x^n+1+x*d^3(x+1)^(n+1)/dx^3

p(x,n)=If[n == 0, 1, x^n + 1 + x*D[(x + 1)^(n + 1), {x, 3}]]

t(n,m)=coefficients(p(x,n))

EXAMPLE

{1},

{1, 1},

{1, 6, 1},

{1, 24, 24, 1},

{1, 60, 120, 60, 1},

{1, 120, 360, 360, 120, 1},

{1, 210, 840, 1260, 840, 210, 1},

{1, 336, 1680, 3360, 3360, 1680, 336, 1},

{1, 504, 3024, 7560, 10080, 7560, 3024, 504, 1},

{1, 720, 5040, 15120, 25200, 25200, 15120, 5040, 720, 1},

{1, 990, 7920, 27720, 55440, 69300, 55440, 27720, 7920, 990, 1}

MATHEMATICA

Clear[p, n, m, x, a];

p[x_, n_] = If[n == 0, 1, x^n + 1 + x*D[(x + 1)^(n + 1), {x, 3}]];

Table[ExpandAll[p[x, n]], {n, 0, 10}];

a = Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}];

Flatten[a]

CROSSREFS

Sequence in context: A060187 A174527 A156139 * A173882 A174045 A169660

Adjacent sequences:  A155860 A155861 A155862 * A155864 A155865 A155866

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula, Jan 29 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 11:22 EST 2018. Contains 299564 sequences. (Running on oeis4.)