login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(2*n+2) = 7*a(2*n+1), a(2*n+1) = 7*a(2*n) - 6^n*A000108(n), a(0) = 1.
5

%I #14 Nov 09 2022 19:17:49

%S 1,6,42,288,2016,14040,98280,686880,4808160,33638976,235472832,

%T 1647983232,11535882624,80745019776,565215138432,3956385876480,

%U 27694701135360,193860506096640,1357023542676480,9499115800977408

%N a(2*n+2) = 7*a(2*n+1), a(2*n+1) = 7*a(2*n) - 6^n*A000108(n), a(0) = 1.

%C Hankel transform is 6^C(n+1, 2).

%H G. C. Greubel, <a href="/A156361/b156361.txt">Table of n, a(n) for n = 0..1000</a>

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry2/barry73.html">A Note on a One-Parameter Family of Catalan-Like Numbers</a>, JIS 12 (2009) 09.5.4.

%F a(n) = Sum{k=0..n} A120730(n,k) * 6^k.

%F (n+1)*a(n) = 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3). - _R. J. Mathar_, Jul 21 2016

%p A156361 := proc(n)

%p option remember;

%p local nh;

%p if n= 0 then

%p 1;

%p elif type(n,'even') then

%p 7*procname(n-1);

%p else

%p nh := floor(n/2) ;

%p 7*procname(n-1)-6^nh*A000108(nh) ;

%p end if;

%p end proc: # _R. J. Mathar_, Jul 21 2016

%t a[n_]:= a[n]= If[n==0, 1, 7*a[n-1] -If[EvenQ[n], 0, 6^((n-1)/2)* CatalanNumber[(n-1)/2]]];

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Aug 04 2022 *)

%o (Magma) [n le 3 select Factorial(n+4)/120 else (7*n*Self(n-1) + 24*(n-3)*Self(n-2) - 168*(n-3)*Self(n-3))/n: n in [1..30]]; // _G. C. Greubel_, Nov 09 2022

%o (SageMath)

%o def a(n): # a = A156361

%o if (n==0): return 1

%o elif (n%2==1): return 7*a(n-1) - 6^((n-1)/2)*catalan_number((n-1)/2)

%o else: return 7*a(n-1)

%o [a(n) for n in (0..30)] # _G. C. Greubel_, Nov 09 2022

%Y Cf. A000108, A001405, A156128, A151162, A156195, A151254, A151281.

%K nonn

%O 0,2

%A _Philippe Deléham_, Feb 08 2009