login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362810
Define G(n, k) to be the n-th derivative of Gamma(x) at k. a(n)=floor(min(G(2n, x))), where min(f) is the local minimum of f in [0,oo).
0
0, 0, 1, 6, 30, 173, 1138, 8386, 67951, 596745, 5618916, 56249658, 594648335, 6602123630, 76631632344, 926329705808, 11623455427764, 150970962492188, 2024773236657401, 27980260971851306, 397645587914766071, 5801999753304428181, 86784442260270596447, 1328924296505789704631, 20807559990139289975657, 332753116291423840918784
OFFSET
0,4
COMMENTS
Appears to grow factorially (superexponentially).
Conjecture: limit_{n->oo} log(a(n)) / log(n!) < 1. - Vaclav Kotesovec, Nov 17 2023
EXAMPLE
a(5) = 173 since the local minimum in [0,oo) of the 10th derivative of Gamma(x) is 173.195...
MATHEMATICA
Join[{0}, Floor[Table[d = Simplify[D[Gamma[x], {x, 2 n}]]; d /. FindRoot[D[d, x] == 0, {x, n/2}, WorkingPrecision -> 50], {n, 1, 10}]]] (* Vaclav Kotesovec, Nov 17 2023 *)
CROSSREFS
Cf. A030171.
Sequence in context: A353891 A353880 A175925 * A365273 A110706 A001341
KEYWORD
nonn
AUTHOR
Jodi Spitz, May 04 2023
EXTENSIONS
a(7)-a(25) from Vaclav Kotesovec, Nov 18 2023
STATUS
approved