The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057754 Integer nearest to Li(10^n), where Li(x) = integral(0..x, dt/log(t)). 9
 6, 30, 178, 1246, 9630, 78628, 664918, 5762209, 50849235, 455055615, 4118066401, 37607950281, 346065645810, 3204942065692, 29844571475288, 279238344248557, 2623557165610822, 24739954309690415, 234057667376222382 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS "Li[z] is central to the study of the distribution of primes in number theory. The logarithmic integral function is sometimes also denoted by Li(z). In some number-theoretical applications li(z) is defined as [integral from 2 to z of 1/log(t) dt], with no principal value taken. This differs from the definition used in 'Mathematica' by the constant li(2)." LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 C. Caldwell, values of pi(x) B. Riemann, On the Number of Prime Numbers 1859, last page (various transcripts) Stephen Wolfram, The Mathematica 3 Book, 1996, Section 3.2.10: Special Functions. FORMULA a(n) = round( Li( 10^n )) = round( Ei( log( 10^n ))). EXAMPLE Li( 10^22 ) = 201467286691248261498.15... => a(22). pi( 10^22 ) = 201467286689315906290. MAPLE seq(round(evalf(Li(10^n), 64)), n=1..19); # Peter Luschny, Mar 20 2019 MATHEMATICA Table[Round[LogIntegral[10^n]], {n, 1, 25}] PROG (PARI) vector(25, n, round(real(-eint1(-log(10^n)))) ) \\ G. C. Greubel, May 17 2019 (Magma) [Round(LogIntegral(10^n)): n in [1..25]]; // G. C. Greubel, May 17 2019 (Sage) [round(li(10^n)) for n in (1..25)] # G. C. Greubel, May 17 2019 CROSSREFS A052435( 10^n ) = a(n) - pi( 10^n ) for n > 0. Cf. A000720, A007504. Sequence in context: A110706 A001341 A089896 * A001473 A334288 A063888 Adjacent sequences: A057751 A057752 A057753 * A057755 A057756 A057757 KEYWORD nonn AUTHOR Robert G. Wilson v, Oct 30 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 16:46 EDT 2024. Contains 371874 sequences. (Running on oeis4.)