login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253946 a(n) = 6*binomial(n+1, 6). 6
6, 42, 168, 504, 1260, 2772, 5544, 10296, 18018, 30030, 48048, 74256, 111384, 162792, 232560, 325584, 447678, 605682, 807576, 1062600, 1381380, 1776060, 2260440, 2850120, 3562650, 4417686, 5437152, 6645408, 8069424, 9738960, 11686752, 13948704, 16564086 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,1

COMMENTS

For a set of integers {1, 2, ..., n}, a(n) is the sum of the 3 smallest elements of each subset with 5 elements, which is 6*C(n+1, 6) (for n >= 5), hence a(n) = 6*C(n+1, 6) = 6 * A000579(n+1).

LINKS

Colin Barker, Table of n, a(n) for n = 5..1000

Serhat Bulut, Oktay Erkan Temizkan, Subset Sum Problem

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

a(n) = 6*C(n+1,6) = 6*A000579(n+1).

G.f.: 6*x^5 / (1-x)^7. - Colin Barker, Apr 03 2015

EXAMPLE

For A = {1, 2, 3, 4, 5, 6} the subsets with 5 elements are {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}.

The sum of 3 smallest elements of each subset: a(6) = (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 4) + (1 + 3 + 4) + (2 + 3 + 4) = 42 = 6*C(6 + 1, 6) = 6*A000579(6+1).

MAPLE

A253946:=n->6*binomial(n+1, 6): seq(A253946(n), n=5..50); # Wesley Ivan Hurt, Feb 13 2015

MATHEMATICA

Drop[Plus @@ Flatten[Part[#, 1 ;; 3] & /@ Subsets[Range@ #, {5}]] & /@

  Range@ 30, 4] (* Michael De Vlieger, Jan 20 2015 *)

6Binomial[Range[6, 29], 6] (* Alonso del Arte, Feb 05 2015 *)

LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {6, 42, 168, 504, 1260, 2772, 5544}, 40] (* Harvey P. Dale, May 14 2019 *)

PROG

(MAGMA) [6*Binomial(n+1, 6): n in [5..40]]; // Vincenzo Librandi, Feb 13 2015

(PARI) Vec(6*x^5/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 03 2015

CROSSREFS

Sequence in context: A169938 A082986 A180806 * A062136 A047663 A326744

Adjacent sequences:  A253943 A253944 A253945 * A253947 A253948 A253949

KEYWORD

nonn,easy

AUTHOR

Serhat Bulut, Jan 20 2015

EXTENSIONS

More terms from Vincenzo Librandi, Feb 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 05:39 EST 2020. Contains 331104 sequences. (Running on oeis4.)