login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253945 a(n) = 6*binomial(n+1,5). 3
6, 36, 126, 336, 756, 1512, 2772, 4752, 7722, 12012, 18018, 26208, 37128, 51408, 69768, 93024, 122094, 158004, 201894, 255024, 318780, 394680, 484380, 589680, 712530, 855036, 1019466, 1208256, 1424016, 1669536, 1947792, 2261952, 2615382, 3011652, 3454542 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

COMMENTS

For a set of integers {1,2,...,n}, a(n) is the sum of the 3 smallest elements of each subset with 4 elements, which is 6*binomial(n+1,5) for n>=4, hence a(n) = 6*binomial(n+1,5) = 6*A000389(n+1). - Serhat Bulut, Oktay Erkan Temizkan, Jan 20 2015

LINKS

Colin Barker, Table of n, a(n) for n = 4..1000

Serhat Bulut, Oktay Erkan Temizkan, Subset Sum Problem

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

a(n) = 6*A000389(n+1).

G.f.: 6*x^4 / (1-x)^6. - Colin Barker, Apr 03 2015

a(n) = Sum_{i=1..n-2} A000217(i-1)*A000217(i+1) with a(3)=0. [Bruno Berselli, Jul 20 2015]

E.g.f.: x^4*(5 + x)*exp(x)/20. - G. C. Greubel, Nov 24 2017

EXAMPLE

For A={1,2,3,4,5}, subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5,}, {2,3,4,5}.

Sum of 3 smallest elements of each subset: a(5) = (1+2+3) + (1+2+3) + (1+2+4) + (1+3+4) + (2+3+4) = 36 = 6*binomial(5+1,5) = 6*A000389(5+1).

MATHEMATICA

Drop[Plus @@ Flatten[Part[#, 1 ;; 3] & /@ Subsets[Range@ #, {4}]] & /@

  Range@ 28, 3] (* Michael De Vlieger, Jan 20 2015 *)

6 Binomial[Range[5, 29], 5] (* Michael De Vlieger, Feb 13 2015, after Alonso del Arte at A253946 *)

PROG

(MAGMA) [6*Binomial(n+1, 5): n in [4..40]]; // Vincenzo Librandi, Feb 13 2015

(PARI) Vec(6*x^4/(1-x)^6 + O(x^100)) \\ Colin Barker, Apr 03 2015

CROSSREFS

Cf. A000389, A000217,

Sequence in context: A083374 A264366 A061707 * A056375 A018214 A181478

Adjacent sequences:  A253942 A253943 A253944 * A253946 A253947 A253948

KEYWORD

nonn,easy

AUTHOR

Serhat Bulut, Jan 20 2015

EXTENSIONS

More terms from Vincenzo Librandi, Feb 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 11:56 EDT 2018. Contains 316321 sequences. (Running on oeis4.)