login
A359847
Oblong numbers k for which phi(k) is also an oblong number.
2
6, 42, 182, 650, 930, 4830, 7482, 9506, 12882, 13572, 16770, 79242, 167690, 181902, 228006, 289982, 380072, 3480090, 5209806, 6872262, 10102862, 16068072, 56002772, 56648202, 59174556, 70299840, 74831150, 123287712, 261517412, 342601590, 356322252, 455459622, 536223492, 1057452842
OFFSET
1,1
COMMENTS
Since k and k+1 are relatively prime, the calculation of phi(k)*phi(k+1) is faster than that of phi(k*(k+1)). - Robert G. Wilson v, Feb 14 2023
LINKS
Eric Weisstein's World of Mathematics, Totient Function.
EXAMPLE
9506 is a term because 9506 = 97*98 and phi(9506) = 4032 = 63*64.
MAPLE
lastv:= 1: R:= NULL: count:= 0:
for n from 3 while count < 50 do
v:= numtheory:-phi(n);
if issqr(4*v*lastv+1) then
R:= R, n*(n-1); count:= count+1;
fi;
lastv:= v;
od:
R; # Robert Israel, Feb 15 2023
MATHEMATICA
Select[Table[n*(n + 1), {n, 1, 100000}], IntegerQ @ Sqrt[4*EulerPhi[#] + 1] &] (* Amiram Eldar, Jan 15 2023 *)
k = pk0 = pk1 = 1; lst = {}; While[k < 10000, If[ IntegerQ@ Sqrt[4*pk0*pk1 + 1], AppendTo[lst, k (k + 1)]]; k++; pk0 = pk1; pk1 = EulerPhi[k + 1]]; lst (* Robert G. Wilson v, Feb 14 2023 *)
PROG
(PARI) for(k=1, 10^5, my(n=k*(k+1), p=eulerphi(n)); if(issquare(4*p+1), print1(n, ", ")))
CROSSREFS
Intersection of A002378 and A236386.
Sequence in context: A082986 A180806 A253946 * A062136 A047663 A326744
KEYWORD
nonn
AUTHOR
Alexandru Petrescu, Jan 15 2023
STATUS
approved