login
A047663
Row 6 of square array defined in A047662.
2
6, 42, 188, 644, 1826, 4494, 9912, 20040, 37758, 67122, 113652, 184652, 289562, 440342, 651888, 942480, 1334262, 1853754, 2532396, 3407124, 4520978, 5923742, 7672616, 9832920, 12478830, 15694146, 19573092, 24221148, 29755914, 36308006
OFFSET
1,1
LINKS
FORMULA
a(n) = (n/45) * (2n^5 + 6n^4 + 35n^3 + 60n^2 + 98n + 69).
From Chai Wah Wu, Nov 01 2018: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
G.f.: x*(-6*x^4 - 20*x^2 - 6)/(x - 1)^7. (End)
MAPLE
seq(coeff(series(x*(-6*x^4-20*x^2-6)/(x-1)^7, x, n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Nov 21 2018
MATHEMATICA
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {6, 42, 188, 644, 1826, 4494, 9912 }, 50] (* or *)
CoefficientList[Series[-((2 (3 + 10 x^2 + 3 x^4))/(-1 + x)^7), {x, 0, 50}], x] (* Stefano Spezia, Nov 01 2018 *)
PROG
(GAP) List([1..35], n->n/45*(2*n^5+6*n^4+35*n^3+60*n^2+98*n+69)); # Muniru A Asiru, Nov 21 2018
CROSSREFS
Sequence in context: A253946 A359847 A062136 * A326744 A054642 A082139
KEYWORD
nonn
STATUS
approved