login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287472
Triangular numbers k such that phi(k) is also a triangular number, where phi(k) is the Euler totient function (A000010).
4
1, 231, 1035, 6786, 190036, 193131, 766941, 1237951, 1348903, 3069003, 3396921, 8034036, 9152781, 11875501, 15694003, 28001386, 29587278, 35149920, 61643856, 63196903, 130758706, 178161126, 198214005, 227751153, 268111746, 339210081, 402102261, 654224878
OFFSET
1,2
COMMENTS
The indices of these triangular numbers are: 1, 21, 45, 116, 616, 621, 1238, 1573, 1642, 2477, 2606, 4008, 4278, 4873, 5602, 7483, 7692, 8384, 11103, 11242, 16171, 18876, 19910, 21342, 23156, 26046, 28358, 36172, 46196, 46621, 67572, 72816, ...
The indices of the triangular phi values are: 1, 15, 32, 63, 384, 495, 927, 1440, 1599, 1856, 2015, 2240, 3200, 4640, 5375, 4895, 4095, 4095, 6400, 9855, 10880, 9855, 13824, 16128, 12095, 19520, 21504, 25344, 25983, 45584, 37184, 40959, ...
LINKS
EXAMPLE
231 = 21*22/2 is triangular, phi(231)=120=15*16/2 is also triangular, thus 231 is in the sequence.
MATHEMATICA
triQ[n_] := IntegerQ@Sqrt[8n+1]; Select[Accumulate[Range[1000]], triQ[EulerPhi[#]]&]
PROG
(PARI) isok(n) = ispolygonal(n, 3) && ispolygonal(eulerphi(n), 3); \\ Michel Marcus, May 25 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 25 2017
STATUS
approved